
Block Oriented Programming: Automating Data-Only A�acks
Kyriakos K. Ispoglou

ispo@purdue.edu

Purdue University

Bader AlBassam

balbassa@purdue.edu

Purdue University

Trent Jaeger

tjaeger@cse.psu.edu

Pennsylvania State University

Mathias Payer

mathias.payer@nebelwelt.net

Purdue University

ABSTRACT
With the wide deployment of Control-Flow Integrity (CFI), control-

�ow hijacking a�acks, and consequently code reuse a�acks, are

signi�cantly harder. CFI limits control �ow to well-known loca-

tions, severely restricting arbitrary code execution. Assessing the

remaining a�ack surface of an application under advanced control-

�ow hijack defenses such as CFI and shadow stacks remains an

open problem.

We introduce BOPC, a mechanism to assess whether an a�acker

can execute arbitrary code on a CFI/shadow stack hardened binary

automatically. BOPC leverages SPL, a Turing-complete high-level

language that abstracts away architecture and program-speci�c

details, such as register mappings, to express exploit payloads. SPL

payloads are compiled into a program trace that executes the de-

sired behavior on top of the target binary. �e input for BOPC is

an SPL payload, a starting point (e.g., from a fuzzer crash), and an

arbitrary read/write primitive that allows application state corrup-

tion. To map SPL payloads to a program trace, BOPC introduces

Block Oriented Programming (BOP), a new code reuse technique that

utilizes entire basic blocks as gadgets along valid execution paths

in the program, i.e., without violating CFI policies. We �nd that

the problem of mapping payloads to program traces is NP-hard, so

BOPC �rst reduces the search space by pruning infeasible paths and

then uses heuristics to guide the search to probable paths. BOPC

encodes the BOP payload as a set of memory writes.

We execute 13 SPL payloads applied to 10 popular applications.

BOPC successfully �nds payloads and complex execution traces –

which would likely not have been found through manual analysis

– while following the target’s Control-Flow Graph under an strict

CFI policy in 81% of the cases.

ACM Reference format:
Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.

2018. Block Oriented Programming: Automating Data-Only A�acks. In

Proceedings of Technical Report, West Lafaye�e, USA, 9 May 2018, 16 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Control-�ow hijacking and code reuse has been a challenging prob-

lem for applications wri�en in C/C++ despite the development

and deployment of several defenses. Basic mitigations include

Data Execution Prevention (DEP) [63] to stop code injection, stack

Technical Report, West Lafaye�e, USA
2018. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

canaries (GS) [22] to stop stack-based bu�er over�ows, and Ad-

dress Space Layout Randomization (ASLR) [48] to probabilistically

make code reuse a�acks harder. �ese mitigations can be bypassed

through, e.g., information leaks [28, 38, 42, 51] or code reuse at-

tacks [13, 37, 56, 57, 66].

Advanced control-�ow hijacking defenses such as Control-Flow

Integrity (CFI) [11, 14, 41, 61] or shadow stacks/safe stacks [40] limit

the set of allowed target addresses for indirect control-�ow trans-

fers. CFI mechanisms typically rely on static analysis to recover

the Control-Flow Graph (CFG) of the application. �ese analyses

over-approximate the allowed targets for each indirect dispatch

location. At runtime, CFI checks determine if the observed target

for each indirect dispatch location is within the allowed target set

for that dispatch location as identi�ed by the CFG analysis. Mod-

ern CFI mechanisms [41, 44, 45, 61] are deployed in, e.g., Google

Chrome [60] or Microso� Windows 10 and Edge [59].

However, CFI still allows the a�acker control over the execu-

tion along two dimensions: �rst, the imprecision in the analysis

enables the a�acker to choose any of the targets in the set for each

dispatch; second, data-only a�acks allow an a�acker to in�uence

conditional branches arbitrarily. Existing a�acks against CFI lever-

age manual analysis to construct exploits for speci�c applications

along these two dimensions [16, 24, 29, 31, 53]. With CFI, exploits

become highly program dependent as the set of gadgets is severely

limited (due to the restrictions for indirect control-�ow), exploits

must therefore follow valid paths in the CFG. Finding a path along

the CFG and satisfying its constraints is much more complex than

simply �nding the locations of gadgets. Finding a�acks against ad-

vanced control-�ow hijacking defenses is therefore predominantly

a challenging manual process.

We present BOPC, an automatic framework to evaluate a pro-

gram’s remaining a�ack surface under strong control-�ow hijack-

ing mitigations. BOPC automates the task of �nding an execution

trace through a buggy program that executes arbitrary, a�acker-

speci�ed behavior. BOPC compiles an “exploit” into a program

trace, executing on top of the original program’s Control-Flow

Graph (CFG). To �exibly express exploit payloads, BOPC leverages

a Turing-complete, high-level language: SPloit Language (SPL). To

interact with the environment, SPL provides a rich API to call OS

functions, direct access to memory, and an abstraction for hardware

registers that allows a �exible mapping. BOPC takes as input an

SPL payload and a starting point (e.g., found through fuzzing or

manual analysis) and returns a trace through the program (encoded

as a set of memory writes) that encodes the SPL payload.

�e core component of BOPC is the mapping process through

a novel code reuse technique we call Block Oriented Programming

1

ar
X

iv
:1

80
5.

04
76

7v
1

 [
cs

.C
R

]
 1

2
M

ay
 2

01
8

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

(BOP). First, BOPC translates the SPL payload into constraints for

individual statements and, for each statement, searches for basic

blocks in the target binary that satisfy these constraints (called

candidate blocks). SPL keeps register assignments abstract from the

underlying architecture. Second, BOPC infers a resource (register

and state) mapping for each SPL statement, iterating through the

set of candidate blocks and turning them into “functional blocks”.
Functional blocks can be used to execute a concrete instantiation

of the given SPL statement. �ird, BOPC constructs a trace that

connects each functional block through dispatcher blocks. Since
the mapping process is NP-hard, to �nd a solution in reasonable

time BOPC �rst prunes the set of functional blocks per statement

to constrain the search space and then uses a ranking based on

the proximity of individual function blocks as a heuristic when

searching for dispatcher gadgets.

We evaluate BOPC on 10 popular network daemons and setuid

programs, demonstrating that BOPC can generate traces from a set

of 13 test payloads. Our test payloads are both reasonable exploit

payloads (e.g., calling execve with a�acker-controlled parame-

ters) as well as a demonstration of the computational capabilities of

SPL (e.g., loops, or conditionals). Applications of BOPC go beyond

an a�ack framework. We envision BOPC as a tool for defenders

and so�ware developers to highlight the residual a�ack surface

of a program. For example, a developer can test whether a bug at

particular statement enables a practical code reuse a�ack in their

program to focus further bug detection. Overall, we present the

following contributions:

• Abstraction: We introduce SPL, a C dialect that provides

access to virtual registers and a rich API to call OS and

other library functions, suitable for writing exploit pay-

loads. SPL enables the necessary abstraction to scale to

large applications.

• Search: Development of a trace module that allows execu-
tion of an arbitrary payload, wri�en in SPL, using code

of the target binary. �e trace module considers strong

defenses such as DEP, ASLR, shadow stack, and CFI alone

or in combination. �e trace module enables the discovery

of viable mappings through a search process.

• Evaluation: Evaluation of our prototype demonstrates the

generality of our mechanism and uncovers exploitable vul-

nerabilities where manual exploitation may have been in-

feasible. For 10 target programs, BOPC successfully gen-

erates exploit payloads and program traces to implement

code reuse a�acks for 13 SPL exploit payloads for 81% of

the cases.

2 BACKGROUND AND RELATEDWORK
Initially, exploits relied on simple code injection to execute arbitrary

code. �e deployment of Data Execution Prevention (DEP) [63]

mitigated code injection and a�acks moved to reusing existing code.
�e �rst code reuse technique, return to libc [26], simply reused

existing libc functions. Return Oriented Programming (ROP) [56]
extended code reuse to a Turing-complete technique. ROP locates

small sequences of code which end with a return instruction, called

“gadgets”. Gadgets are connected by injecting the correct state,

e.g., by preparing a set of invocation frames on the stack [56]. A

number of code reuse variations followed [13, 19, 32], extending the

approach from return instructions to arbitrary indirect control-�ow

transfers.

Several tools [30, 46, 52, 54] seek to automate ROP payload gen-

eration. However, the automation su�ers from inherent limita-

tions. �ose tools fail to �nd gadgets in the target binary that do

not follow the expected form “inst1; inst2; ... retn;”.
�ese tools search for a set of hard coded gadgets that form pre-

determined gadget chains. Instead of abstracting the required com-

putation, the tools search for speci�c gadgets. If any gadget is not

found or if a more complex gadget chain is needed, these tools

degenerate to gadget dump tools, leaving the process of gadget

chaining to the researcher who manually creates exploits from

discovered gadgets.

�e invention of code reuse a�acks resulted in a plethora of new

detection mechanisms based on execution anomalies and heuris-

tics [20, 25, 35, 47, 50] such as frequency of return instructions.

Such heuristics can o�en be bypassed [17].

While the aforementioned tools help to cra� appropriate pay-

loads, �nding the vulnerability is an orthogonal process. Automatic

Exploit Generation (AEG) [12] was the �rst a�empt to automati-

cally �nd vulnerabilities and generate exploits for them. AEG is

limited in that it does not assume any defenses (such as the now ba-

sic DEP or ASLR mitigations). �e generated exploits are therefore

bu�er over�ows followed by static shellcode.

2.1 Control Flow Integrity
Control Flow Integrity [11, 14, 41, 61] (CFI) prevents control �ow
hijacking to arbitrary locations (and therefore code reuse a�acks).

CFI restricts the set of potential targets that are reachable from

an indirect branch. While CFI does not stop the initial memory

corruption, it validates the code pointer before it is used. CFI infers

a CFG of the program to determine the allowed targets for each

indirect control �ow transfer. Before each indirect branch, the

target address is checked to determine if it is a valid edge in the

CFG, and if not an exception is thrown. �is limits the freedom for

the a�acker, as she can only target a small set of targets instead

of any executable byte in memory. For example, an a�acker may

overwrite a function pointer through a bu�er over�ow, but the

function pointer is checked before it is used. Note that CFI targets

the forward edge, i.e., virtual dispatch for C++ or indirect function

calls for C. CFI is deployed in modern browsers (Google Chrome

and Microso� Edge) due to its success in preventing control-�ow

hijacking.

With CFI, code reuse a�acks become harder, but not impossi-

ble [16, 29, 31, 53]. Depending on the application and strength of

the CFI mechanism, CFI can be bypassed with Turing-complete

payloads, which are o�en of high complexity to ensure compliance

with the CFG. So far, these code-reuse a�acks rely on manually

constructed payloads.

Deployed CFI implementations [41, 44, 45, 49, 61] use a static

over-approximation of the CFG – based on method prototypes and

class hierarchy. Pi�yPat [27] and PathArmor [64] introduce path

sensitivity that evaluates partial execution paths. Newton [65] in-

troduced a framework that reasons about the strength of defenses,

including CFI. Newton exposes indirect pointers (along with their

2

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

allowed target set) that are reachable (i.e., controllable by an ad-

versary) through given entry points. While Newton displays all

usable “gadgets”, it cannot stitch them together and e�ectively is a

CFI-aware ROP gadget search tool that helps an analyst to manually

construct an a�ack.

2.2 Shadow Stacks
While CFI protects forward edges in the CFG (i.e., function pointers

or virtual dispatch), a shadow stack orthogonally protects backward
edges (i.e., return addresses) [23]. Shadow stacks keep a protected

copy (called shadow) of all return addresses on a separate, protected

stack. Function calls store the return address both on the regular

stack and on the shadow stack. When returning from a function,

the mitigation checks for equivalence and reports an error if the

two return addresses do not match. �e shadow stack itself is

assumed to be at a protected memory location to keep the adversary

from tampering with it. Shadow stacks enforce stack integrity and

protect from any control-�ow hijack a�ack against the backward

edge.

2.3 Data-only Attacks
While CFI mitigates most code reuse a�acks, CFI cannot stop data-

only a�acks. Manipulating a program’s data can be enough for a

successful exploitation. Data-only a�acks target the program’s data

rather than the execution �ow. E.g., having full control over the

arguments to execve() su�ces for arbitrary command execution.

Also, data in a program may be sensitive: consider overwriting

the uid or a variable like is admin. Data-only a�acks were

generalized and de�ned formally as Data Oriented Programming
(DOP) [34]. Existing DOP a�acks rely on an analyst to identify

sensitive variables for manual construction.

Similarly to CFI, it is possible to build the Data Flow Graph of the
program and apply Data Flow Integrity (DFI) [18] to it. However, to

the best of our knowledge, there are no practical DFI-based defenses

due to prohibitively high overhead of data-�ow tracking.

In comparison to existing data-only a�acks, BOPC automatically

generates payloads based on a high-level programming language.

�e payloads follow the valid CFG of the program but not its Data

Flow Graph.

3 ASSUMPTIONS AND THREAT MODEL
Our threat model consists of a binary with a known memory cor-

ruption vulnerability that is protected with the state-of-the-art

control-�ow hijack mitigations, such as Control Flow Integrity

(CFI) along with a Shadow Stack. Furthermore, the binary is also

hardened with Data Execution Prevention (DEP), Address Space

Layout Randomization (ASLR) and Stack Canaries (GS).

We assume that the target binary has an arbitrary memory write

vulnerability. �at is, the a�acker can write any value to any
(writable) address. We call this an Arbitrary memory Write Primitive
(AWP). To bypass probabilistic defenses such as ASLR, we assume

that the a�acker has access to an information leak, i.e., a vulnera-

bility that allows her to read any value from any memory address.

We call this an Arbitrary memory Read Primitive (ARP).
We also assume that there exists an entry point, i.e., a location

that the program reaches naturally and occurs a�er all AWPs and

ARPs have been completed. �is can be an a�acker-controlled code

pointer where the control �ow is hijacked. Determining an entry

point is considered to be part of the vulnerability discovery process.

�us, �nding this entry point is orthogonal to our work.

Note that these assumptions are in line with the threat model of

control-�ow hijack mitigations that aim to prevent a�ackers from

exploiting arbitrary read and write capabilities. �ese assumptions

are also practical. Orthogonal bug �nding tools such as fuzzing

o�en discover arbitrary memory accesses that can be abstracted

to the required arbitrary read and writes with an entry point right

a�er the AWP. Furthermore, these assumptions map to real bugs.

Web servers, such as nginx, spawn threads to handle requests and a

bug in the request handler can be used to read or write an arbitrary

memory address. Due to the request-based nature, the adversary

can repeat this process multiple times. A�er the completion of the

state injection, the program follows an alternate and disjoint path

to trigger the injected payload.

�ese assumptions enable BOPC to inject the payload into the

program, modifying its execution state and starting the payload

execution from the given entry point. BOPC assumes that the AWP

and ARP may be triggered multiple times to modify the execution

state of the target binary. A�er the state modi�cation completes, the

SPL payload executes without further changes in execution state.

�is separates SPL execution into two phases: state modi�cation

and execution. �eAWP/ARP allow state modi�cation, BOPC infers

the required state change to execute the SPL payload.

4 DESIGN
Figure 1 shows how BOPC automates the analyst tasks necessary

to leverage AWPs and/or ARPs to produce a useful exploit in the

presence of strong defenses, including CFI. First, BOPC provides an

exploit programming language, called SPloit Language (SPL), that
enables analysts to de�ne exploits independent of the target pro-

gram or underlying architecture. Second, to automate how analysts

�nd gadgets that implement SPL statements that comply with CFI,

BOPC �nds basic blocks from the target program that implement

individual SPL statements, called functional blocks. �ird, to enable

analysts to chain basic blocks together in a manner that complies

with CFI and shadow stacks, BOPC searches the target program

for sequences of basic blocks that connect pairs of neighboring

functional blocks, which we call dispatcher blocks. Fourth, BOPC
simulates the BOP chain to produce a payload that implements that

SPL payload from a chosen AWP.

�e BOPC design builds on two key ideas: Block Oriented Pro-

gramming and Block Constraint Summaries. First, defenses such as

CFI, impose stringent restrictions on transitions between gadgets,

so we no longer have the �exibility of se�ing the instruction pointer

(1) SPL Payload (2) Selecting
functional blocks

(3) Searching for
dispatcher blocks

(4) Stitching
BOP gadgets

Figure 1: Overview of BOPC’s design.

3

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Functional

Dispatcher

BOP

Gadget

Figure 2: BOP gadget structure. �e functional part consists
of a single basic block that executes an SPL statement. Two
functional blocks are chained together through a series of
dispatcher blocks, without clobbering the execution of the
previous functional blocks.

to arbitrary values. Instead, BOPC implements Block Oriented Pro-
gramming (BOP), which constructs exploit programs called BOP
chains from basic block sequences in the valid CFG of a target pro-

gram. Note that our CFG encodes both forward edges (protected

by CFI) and backward edges (protected through a shadow stack).

For BOP, gadgets are no longer arbitrary sequences of instructions

ending in an indirect control-�ow transfer, but chains of entire

basic blocks (sequences of instructions that end with a direct or
indirect control-�ow transfer), as shown in Figure 2. A BOP chain

consists of a sequence of BOP gadgets where each BOP gadget is:

one functional block that implements a statement in an SPL payload

and zero or more dispatcher blocks that connect the functional block
to the next BOP gadget in a manner that complies with the CFG.

Second, BOPC abstracts each basic block from individual in-

structions operating on speci�c registers into Block Constraint Sum-
maries, enabling blocks to be employed in a variety of di�erent

ways. �at is, a single block may perform multiple functional

and/or dispatching operations by utilizing di�erent sets of registers

for di�erent operations, As an example, a basic block that modi�es

register rdx unintentionally, is clobbering if rdx is part of the reg-

ister mapping, or a dispatcher block if it is not. In addition, BOPC

leverages abstract block constraint summaries to apply blocks in

multiple contexts. At each stage in the development of a BOP chain,

the blocks that may be employed next in the CFG as dispatcher

blocks to connect two functional blocks depend on the block sum-

mary constraints for each block. �ere are two cases: either the

candidate dispatcher block’s summary constraints indicate that it

will modify the register state set by the functional blocks, called

the SPL state, or it will not, enabling the computation to proceed

without disturbing the e�ects of the functional blocks. A block

that modi�es a current SPL state is said to be a clobbering block
for that state. Block summary constraints enable identi�cation of

clobbering blocks at each point in the search.

An important distinction between BOP and conventional ROP

(and variants) is that the problem of computing BOP chains is NP-

hard, as proven in Appendix B. Conventional ROP assumes that

indirect control-�ows may target any executable byte (or a subset

thereof) in memory while BOP must follow a legal path through the

CFG for any chain of blocks, which motivates the need for tooling

support.

4.1 Expressing Payloads
To start a search for exploits, analystsmust identifywhat constitutes

a useful exploit. In the past, analysts likely have had a small number

of exploit types in mind to guide manual search from gadgets,

but the speci�c nature of the exploit depends on the low-level

details of the target program and processor architecture. �us,

writing exploits has li�le bene�t since they will di�er depending

on the gadgets available in the target program. Previous automated

approaches for exploit generation were designed with a speci�c

type of exploit in mind, so they built the exploit speci�cations into

their tools procedurally.

When searching for exploits against strong defenses automat-

ically, such ad hoc approaches will not su�ce. Knowledge of the

gadgets necessary to perform an exploit cannot be built into the

exploit generation program because the way each exploit will be im-

plemented by blocks and the way that such blocks may be chained

together varies from target program to target program. In addition,

we want to enable analysts to generate exploit payloads for target

programs built for di�erent processor architectures without them

having to be an expert in that processor architecture.

To address this problem, BOPC provides a programming lan-

guage, called SPloit Language (SPL) that allows analysts to express

exploit payloads in a compact high-level language that is indepen-

dent of target programs or processor architectures. SPL is a dialect

of C. Table 1 shows some sample payloads. Overall, SPL has the

following features:

• It is Turing-complete;

• It is architecture independent;

• It is close to a well known, high level language.

Compared to existing exploit development tools [30, 46, 52, 54],

the architecture independence of SPL has important advantages.

First, the same payload can be executed under di�erent ISAs or op-

erating systems. Second, SPL uses a set of virtual registers, accessed
through reserved volatile variables. Virtual registers increase �ex-

ibility, which in turn increases the chances of �nding a solution.

�at is, when payload uses a virtual register, any general purpose

register (16 for x86-64) may be used.

To interact with the environment, SPL de�nes a concise API

to access OS functionality. Finally, SPL supports conditional and

unconditional jumps to enable control-�ow transfers to arbitrary

locations. �is feature makes SPL a Turing-complete language,

proven in Appendix C. �e complete language speci�cations are

shown in Appendix A in Extended Backus–Naur form (EBNF).

�e environment for SPL di�ers from that of conventional lan-

guages. Instead of running code directly on a CPU, our compiler

encodes the payload as a mapping of instructions to functional

blocks. �at is, the underlying runtime environment is the target

binary and its program state, where payloads are executed as side

e�ects of the underlying binary.

4

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Simple loop Spawn a shell
void payload() {

__r0 = 0;

LOOP:
__r0 += 1;
if (__r0 != 128)
goto LOOP;

returnto 0x446730;
}

void payload() {
string prog = "/bin/sh\0";
int64 *argv = {&prog, 0x0};

__r0 = &prog;
__r1 = &argv;
__r2 = 0;

execve(__r0, __r1, __r2);
}

Table 1: Examples of SPL payloads.

4.2 Selecting functional blocks
To generate a BOP chain for an SPL payload, BOPC must �nd a

sequence of blocks that implement each statement in the SPL pay-

load, which we call functional blocks. �e process of building BOP

chains starts by identifying functional blocks per SPL statement.

Conceptually, BOPC must compare each block to each SPL state-

ment to determine if the block can implement the statement. How-

ever, blocks are in terms of machine code and SPL statements are

high-level program statements. To provide �exibility for matching

blocks to SPL statements, BOPC computes block constraint sum-
maries, which de�ne the possible impacts that the block would

have on SPL state. Block constraint summaries provide �exibility

in matching blocks to SPL statements because there are multiple

possible mappings of SPL statements and their virtual registers to

the block and its constraints on registers and state.

�e constraint summaries of each basic block is obtained by

isolating and symbolically executing it. �e e�ect of symbolically

executing a basic block creates a set of constraints, mapping input

to the resultant output. Such constraints may refer to registers,

memory locations, and external operations (e.g., library calls).

To �nd a match between a block and an SPL statement the block

must perform all the operations required for that SPL statement.

More speci�cally, the constraints of the basic block must be a su-

perset of the operations required to implement the SPL statement.

4.3 Finding BOP gadgets
BOPC computes a set of all potential functional blocks for each
SPL statement or halts if any statement has no blocks. To stitch

functional blocks, BOPC must select one functional block and a

sequence of dispatcher blocks that reach the next functional block

in the payload. �e combination of a functional block and its dis-

patcher blocks is called a BOP gadget, as shown in Figure 2. To

build a BOP chain, BOPC must select exactly one functional block

from each set and �nd the appropriate dispatcher blocks to connect

all functional blocks together.

However, dispatcher paths between two functional blocks may

not exist. Either because there is no legal path in the CFG between

them, or the execution �ow cannot naturally reach the next block

due to un-satis�able runtime constraints. �is constraint imposes

limits on functional block selection, as the existence of a dispatcher

path depends on the previous BOP gadgets.

BOP gadgets are volatile: gadget feasibility changes based on the

execution state (i.e., context) of the target binary. �is concept is

illustrated in Figure 3. �e problem of selecting a suitable sequence

of functional blocks, such that a dispatcher path exists between

(a) (b) (c)

Figure 3: Visualisation of BOP gadget volatility, rectangles:
SPL statements, dots: functional blocks (a). Connecting
any two statements through dispatcher blocks constrains re-
maining gadgets (b), (c).

every possible control �ow transfer in the SPL payload, is NP-

hard (as we prove in Appendix B), and we are not aware of an

approximative algorithm.

As the problem is not solvable in polynomial time, we propose

several heuristics and optimizations to �nd solutions in reasonable

amounts of time. BOPC leverages basic block proximity as a metric

to “rank” dispatcher paths and organizes this information into a

special data structure, called a delta graph that provides an e�cient

way to probe potential sequences of functional blocks.

4.4 Searching for dispatcher blocks
While each functional block executes a statement, BOPC must

chain multiple functional blocks together to execute the SPL pay-

load. Functional blocks are connected through zero to L blocks

that may not clobber the SPL state computed thusfar. Finding such

non-clobbering blocks that transfer control from one functional

statement to another is challenging as each additional block in-

creases the constrains and path dependencies. We propose a graph

data structure, the delta graph to represent the state of the search

for dispatcher blocks. �e delta graph stores, for each functional

block for each SPL, statement the shortest path to the next candi-

date block. Stitching arbitrary sequences of statements is NP-hard

as each selected path between two functional statements in�uences

the availability of further candidate blocks or paths, we therefore

leverage the delta graph to try likely candidates �rst.

�e intuition behind the proximity of functional blocks is that

shorter paths result in simpler and satis�able constraints. Although

this metric is a heuristic (see Table 2 for a counter example), our

evaluation (Section 6) shows that it works well in practice.

�e delta graph enables quick elimination of sets of functional

blocks that are highly unlikely to have dispatcher blocks and thus

constitute a BOP gadget. For instance, if there is no valid path in the

CFG between two functional blocks (e.g., if execution has to traverse

the CFG “backwards”), no dispatcher will exist and therefore, these

two functional blocks cannot be part of the solution.

�e delta graph, is a multi-partite, directed graph which has a

set of functional block nodes for every payload statement. An edge

between two functional blocks represents the minimum number

of executed basic blocks to move from one functional block to

the other, while avoiding clobbering blocks. See Figure 7 for an

example.

Indirect control-�ow transfers pose an interesting challenge

when calculating the shortest path between two basic blocks in

5

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Function 1:
<instructions>
...
call Function_2 Function 2:
<insn_after_call> <prologue>
... ...

B:
<instructions> <instructions>

A:
<nop_sled> ...
call Function_2 retn
<insn_after_call>
retn

1

4

2 3

Figure 4: Existing shortest path algorithms are un�t to mea-
sure proximity in the CFG. Consider the shortest path from
A to B. A context-unaware shortest path algorithmwillmark
the red path as solution, instead of following the blue arrow
upon return from Function 2, it follows the red arrow (3).

Long path with simple constraints Short path with complex constraints

a, b, c, d, e = input();
// point A
if (a == 1) {
if (b == 2) {

if (c == 3) {
if (d == 4) {
if (e == 5) {

// point B
...

a = input();

X = sqrt(a);
Y = log(a*a*a - a)

// point A
if (X == Y) {

// point B
...

Table 2: A counterexample that demonstrates why proxim-
ity between two functional blocks can be inaccurate. Le�,
we canmove frompointA to point B even if they are 5 blocks
apart from each other. Right, it is much harder to satisfy the
constrains and to move from A to B, despite the fact that A
and B are only 1 block apart.

a CFG: while they statically allow multiple targets, at runtime

they are context sensitive and only have one concrete target. Our

context sensitive shortest path algorithm is a recursive version

of Dijkstra’s [21] shortest path algorithm. We start with regular

shortest path, assuming that every edge on the CFG has cost 1. Each

time we encounter a basic block that ends with a call instruction,

we recursively run a new shortest path algorithm, starting from the

calling function. If the destination basic block is inside the caller

function, then the shortest path is the addition of the two individual

shortest paths (from the beginning to the function’s entry point and

from there to the target block). Otherwise, we calculate the shortest
path from the function’s entry point to the closest return and use

this value as an edge weight to the callee. Our algorithm uses a call
stack to keep track of all visited functions to avoid in�nite loops in

case of recursive functions. Finally, our algorithm avoids any basic

block that are marked as clobbering.

A�er creation of the delta graph, our algorithm selects exactly
one node (i.e., functional block) from each set (i.e., payload state-

ment), to minimize the total weight of the resulting induced sub-
graph 1

. �is selection of functional blocks is considered to be the

1
�e induced subgraph of the delta graph is a subgraph of the delta graph with one

node (functional block) for each SPL statement and with edges that represent their

shortest available dispatcher block chain.

most likely to give a solution, so the next step is to �nd the exact

dispatcher blocks and create the BOP gadgets for the SPL payload.

4.5 Stitching BOP gadgets
�eminimum induced subgraph from the previous step determines

a set of functional blocks that may be stitched together into an SPL

payload. �is set of functional blocks is close to each other, making

satis�able dispatcher paths more likely.

To �nd a dispatcher path between two functional blocks, BOPC

leverages concolic execution [55] (symbolic execution along a given

path). Along the way, it collects the required constraints that are

needed to lead the execution to the next functional block. Sym-

bolic execution engines [15, 58] translate basic blocks into sets of

constraints and use Satis�ability Modulo �eories (SMT) to �nd

satisfying assignments for these constraints; symbolic execution is

therefore NP-complete. Starting from the (context sensitive) short-

est path between the functional blocks, BOPC guides the symbolic

execution engine, collecting the corresponding constraints.

To construct an SPL payload from a BOP chain, BOPC launches

concolic execution from the �rst functional block in the BOP chain,

starting with an empty state. At each step BOPC tries the �rst K
shortest dispatcher paths until it �nds one that reaches the next

functional block (the edges in the minimum induced subgraph in-

dicate which is the “next” functional block). �e corresponding

constraints are added to the current state. �e search therefore

incrementally adds BOP gadgets to the execution state. When a

functional block represents a conditional SPL statement, its node

in the induced subgraph contains two outgoing edges (i.e., the exe-

cution can transfer control to two di�erent statements). However

during the concolic execution, the algorithm does not know which

one will be followed, it clones the current state and independently

follows both branches, exactly like symbolic execution [15].

Reaching the last functional block, BOPC checks whether the

constraints have a satisfying assignment and forms an exploit pay-

load. Otherwise, it falls back and tries the next possible set of

functional blocks. To repeat that execution on top of the target

binary, these constraints are concretized and translated into a mem-

ory layout that will be initialized through AWP in the target binary.

5 IMPLEMENTATION
Our open source prototype, BOPC, is implemented in Python and

consists of approximately 14,000 lines of code. BOPC requires three

distinct inputs:

• �e exploit payload expressed in SPL,

• �e vulnerable application on top of which the SPL payload

runs,

• �e entry point in the vulnerable application, which is a

location that program reaches naturally and occurs a�er

all memory writes have been completed.

�e output of BOPC is a sequence of (address,value, size) tu-
ples that describe how the memory should be modi�ed during the

state modi�cation phase (Section 3) to execute the payload. Op-

tionally, it may also require some additional (stream,value, size)
tuples that describe what input should be given on any potentially

open “streams” (�le descriptors, sockets, stdin) that the a�acker

controls during the execution of the payload.

6

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Binary
Frontend

Binary

SPL
Frontend

SPL
payload

Find
Candidate
Blocks

Find
Functional
Blocks

Build
Delta
Graph

Min.
Induced

Subgraphs
Simulation Output (addr, value)

(addr, value)

. . .

(addr, value)

N KPL

CFGA

IR

RG

VG

CB

FB

MAdj

δG Hk Cw

Figure 5: High level overview of the BOPC implementation. �e red arrows indicate the iterative process upon failure. CFGA:
CFG with basic block abstractions added, IR: Compiled SPL payload RG : Register mapping graph, VG : All variable mapping
graphs, CB : Set of candidate blocks, FB : Set of functional blocks, MAdj : Adjacency matrix of SPL payload, δG: Delta graph,
Hk : Induced subgraph, Cw : Constraint set. L: Maximum length of continuous dispatcher blocks. P : Upper bound on payload
“shu�les”, N : Upper bound on minimum induced subgraphs, K : Upper bound on shortest paths for dispathers,

A high level overview of BOPC is shown in Figure 5. Our algo-

rithm is iterative; that is, in case of a failure, the red arrows, indicate

which module is executed next.

5.1 Binary Frontend
�e Binary Frontend, li�s the target binary into an intermediate

representation that exposes the application’s CFG. Operating di-

rectly on basic blocks is cumbersome and heavily dependent on

the Application Binary Interface (ABI). Instead, we translate each

basic block into a block constraint summary. Abstraction leverages

symbolic execution [39] to “summarize” the basic block into a set

of constraints encoding changes in registers and memory, and any

potential system, library call, or conditional jump at the end of the

block – generally any e�ect that this block has on the program’s

state. BOPC executes each basic block in an isolated environment,

where every action (such as accesses to registers or memory) is

monitored. �erefore, instead of working with the instructions of

each basic block, BOPC utilizes its abstraction for all operations.

�e abstraction information for every basic block is added to the

CFG, resulting in CFGA.

5.2 SPL Frontend
�e SPL Frontend translates the exploit payload into a graph-based

Intermediate Representation (IR) for further processing. To increase

the �exibility of the mapping process, statements in a sequence may

be executed out-of-order. For each statement sequence we build

a dependence graph based on a customized version of Kahn’s [36]

topological sorting algorithm, to infer all groups of independent

statements. Independent statements in a subsequence are then

turned into a set of statements which can be executed out-of-order.

�is results in a set of equivalent payloads that are essentially

permutations of the original. Our goal is to �nd a solution for any
of them.

5.3 Locating candidate block sets
SPL is an high level language that hides the underlying ABI. �ere-

fore, BOPC looks for potential ways to “map” the SPL environment

to the underlying ABI. �e key insight in this step, is to �nd all

possible ways to map the individual elements from the SPL envi-

ronment to the ABI (though candidate blocks) and then iteratively

selecting valid subsets from the ABI to “simulate” the environment

of the SPL payload.

Once the CFGA and the IR are generated, BOPC searches for

and marks candidate basic blocks, as described in Section 4.2. For a

block to be candidate, it must “semantically match” with one (or

more) payload statements. Table 3 shows the matching rules. Note

that variable assignments, unconditional jumps, and returns do not

require a basic block and therefore are excluded from the search.

All statements that assign or modify registers require the ba-

sic block to apply the same operation on undetermined hardware

registers. For function calls, the requirement for the basic block is

to invoke the same call, either as a system call or as a library call.

Note that the calling convention exposes the register mapping.

Upon a successful matching, BOPC builds the following data

structures:

• RG , the Register Mapping Graph which is a bipartite undi-

rected graph. �e nodes in the two sets represent the

virtual and hardware registers respectively. �e edges rep-

resent potential associations between virtual and hardware

registers.

• VG , the Variable Mapping Graph, which is very similar to

RG , but instead associates payload variables to underlying

memory addresses. VG is unique for every edge in RG i.e.:

∀(rα , reдγ) ∈ RG ∃!V αγ
G (1)

• DM , the Memory Dereference Set, which has all memory

addresses, that are dereferenced and their values are loaded

into registers. �ose addresses can be symbolic expressions

(e.g., [rbx + rdx*8]), and therefore we do not know

the concrete address they point to, until execution reaches

them.

A�er this step, each SPL statement has a list of candidate blocks.
Note that a basic block can be candidate for multiple statements.

If for some statement there are no candidate blocks, the algorithm

halts and reports that the program cannot be synthesized.

7

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Statement Form Abstraction Actions Example

Register Assignment
rα = C

reдγ ← C

RG ∪
{
(rα , reдγ)

} – movzx rax, 7h
reдγ ← ∗A DM ∪ {A} mov rax, ds:fd

rα = &V
reдγ ← C, C ∈R∧W

V
αγ
G ∪

{
(V ,A)

} – lea rcx, [rsp+20h]
reдγ ← ∗A DM ∪ {A} mov rdx, [rsi+18h]

Register Modi�cation rα �= C reдγ ← reдγ � C RG ∪
{
(rα , reдγ)

}
dec rsi

Memory Read rα = ∗ rβ reдγ ← ∗reдδ RG ∪
{
(rα , reдγ), (rβ , reдδ)

} mov rax, [rbx]

Memory Write ∗ rα = rβ ∗reдγ ← reдδ mov [rax], [rbx]

Call call(rα , rβ , ...) Ijk Call to call RG ∩
{
(rα ,%rdi), (rβ ,%rsi), ...

}
call execve

Conditional Jump
i f (rα �= C)
дoto LOC

Ijk Boring ∧
condition = reдγ � C RG ∪

{
(rα , reдγ)

} test rax, rax
jnz LOOP

Table 3: Semantic matching of SPL statements to basic blocks. Abstraction indicates the requirements that the basic block
abstraction needs to have to match the SPL statement in the Form. Upon a match, the appropriate Actions are taken. rα ,
rβ : Virtual registers, reдγ , reдδ : Hardware registers, C: Constant value, V : SPL variable, A: Memory address, RG : Register

mapping graph,VG : Variable mapping graph, DM : Dereferenced Addresses Set, Ijk Call: A call to an address, Ijk Boring:
A normal jump to an address.

5.4 Identifying functional block sets
A�er determining the set of candidate blocks, CB , BOPC iteratively
identi�es, for each SPL statement, which candidate blocks can serve

as functional blocks, i.e., the blocks that perform the operations.

�is step determines for each candidate block if there is a resource

mapping that satis�es the block’s constraints.

BOPC identi�es the concrete set of hardware registers and mem-

ory addresses that execute the desired statement. A successful

mapping identi�es candidate blocks that serve as functional blocks.

To �nd the hardware-to-virtual register association, BOPC searches

for a maximum bipartite matching [21] in RG . If such a mapping

does not exists, the algorithm halts. �e selected edges indicate

the set of VG graphs that are used to �nd the variable-to-address

association (see Section 5.3, there can be a VG for every edge in

RG). �en for every VG the algorithm repeats the same process to

�nd another maximum bipartite matching.

�is step determines, for each statement, which concrete regis-

ters and memory addresses are reserved. Merging this information

with the set of candidate blocks removes clobbering blocks, i.e., any

candidate blocks that are unsatis�able.

However, the previous mappingmay not be unique (there may be

other sets of functional blocks). If the current mapping does not lead

to a solution, the algorithm revisits an alternatemapping iteratively.

�e algorithm enumerates all maximum bipartite matchings [62],

trying them one by one. If no matching leads to a solution, the

algorithm halts.

5.5 Selecting functional blocks
Given the functional block set FB , this step searches for a set that

executes all payload statements. �e goal is to select exactly one

functional block for every IR statement and �nd dispatcher blocks

to chain them together. BOPC builds the delta graph δG, described
in Section 4.4.

Once the delta graph is generated, this step locates theminimum
induced subgraph, which is the exact set of functional blocks that

execute the payload. If the minimum induced subgraph does not

result in a solution, the algorithm tries the second shortest subgraph,

and so on. As an exponential number of subgraphs may exist, this

step limits the search to the N minimum.

If the resulting delta graph does not lead to a solution, this

step “shu�es” out-of-order payload statements, see Section 5.2,

and builds a new delta graph. Note that the number of di�erent

permutations may be exponential. �erefore, our algorithm sets an

upper bound P on the number of tried permutations.

Each permutation results in a di�erent yet semantically equiv-

alent SPL payload, so the CFG of the payload (i.e., the Adjacency
Matrix,MAdj needs to be recalculated.

5.6 Discovering dispatcher blocks
�e simulation phase takes the individual functional blocks (con-

tained in the minimum induced subgraph Hk) and tries to �nd

the appropriate dispatcher blocks, to compose the BOP gadgets. It

returns a set of memory assignments for the corresponding dis-

patcher blocks, or an error indicating un-satis�able constraints for

the dispatchers.

BOPC is called to �nd a dispatcher path for every edge in the

minimum induced subgraph. �at is, we need to simulate every

control �ow transfer in the adjacency matrix, MAdj of the SPL

payload. However, dispatchers are built on the execution state, so

BOP gadgets must be stitched with the respect to the execution

�ow which starts from the entry point.

Finding dispatcher blocks relies on concolic execution. Our algo-

rithm utilizes functional block proximity as a metric for dispatcher

path quality. However, it cannot predict which constraints will take

exponential time to solve (in practice we set a timeout). �erefore

concolic execution selects the K (context sensitive) shortest paths

as dispatcher blocks and tries them (starting from the shortest) until

one leads to a set of satis�able constraints. It turns that this metric

works very well in practice even for small values of K (e.g., 8).

�us, we �nd the shortest path between two functional blocks

(i.e., the BOP dispatcher), and we instruct the symbolic execution

engine to follow it. Alternatively, the simulation tries the second

shortest one and so on. �is is similar to the k-shortest path [67]

algorithm used for the delta graph.

8

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

When simulation starts it also initializes any SPL variables at the

locations that are reserved during the variablemapping (Section 5.4).

�ese addresses are marked as immutable, so any unintended mod-

i�cation raises an exception which stops this iteration.

In Table 3, we introduce the set of Dereferenced Addresses, DM ,

which is the set of memory addresses whose contents are loaded

into registers. Simulation cannot obtain the exact location of a

symbolic address (e.g., [rax + 4]) until the block is executed

and the register has a concrete value. Before simulation reaches a

functional block, it concretizes any symbolic addresses from DM
and initializes the memory cell accordingly. If that memory cell

has already been set, any initialization prior to the entry point

cannot persist. �at is, BOPC cannot leverage an AWP to initialize

this memory cell and the iteration fails. If a memory cell has been

used in the constraints, its concretization can make constraints

unsatis�able and the iteration may fail.

Simulation traverses the minimum induced subgraph, and in-
crementally extends the execution state from one BOP gadget to

the next. Encountering a conditional statement (i.e., a functional

block has two outgoing edges), BOPC clones the current state and
continues building the trace for both paths independently, in the

same way that a symbolic execution engine handles conditional

statements. When a path reaches a functional block that was al-

ready visited, it gracefully terminates. At the end, we collect all

those states and check whether the constraints of these paths are

satis�able or not. If so, we have a solution.

5.7 Synthesizing exploit from execution trace
If the simulation module returns a solution, the �nal step is to

encode the execution trace as a set of memory writes in the target

binary. �e constraint set Cw collected during simulation reveal a

memory layout that leads to an execution �ow across functional

block according to the minimum induced subgraph.

Concretizing the constraints for all participating conditional vari-

ables at the end of the simulation can result in incorrect solutions,

as shown in the following example:

a = input();
if (a > 10 && a < 20) {

a = 0;
/* target block */

}

�e symbolic execution engine concretizes the symbolic variable

assigned to a, upon assignment. When execution reaches “target

block”, a is 0, which is contradicts the precondition to reach the

target block. Hence, BOPC needs to resolve the constraints on the
�y, rather than at the end of the simulation.

�erefore, this step is done alongside the simulation, carefully

monitoring all variables and concretizing them at the right moment.

More speci�cally, memory locations that are accessed for �rst time,

are assigned a symbolic variable. Whenever a memory write occurs,

a check ensures that the initial symbolic variable persists in the

new symbolic expression. If not, BOPC concretizes it, adding the

concretized value to the set of memory writes.

�ere are also some symbolic variables that do not participate
in the constraints, but are used as pointers. �ese variables are

concretized to point to a writable location to avoid segmentation

faults outside of the simulation environment.

Finally, it is possible for registers or external symbolic variables

(e.g., data from stdin, sockets or �le descriptors) to be part of the

constraints. BOPC executes a similar translation for the registers

and any external input, as these are inputs to the program that are

usually also controlled by the a�acker.

6 EVALUATION
To evaluate BOPC, we leverage a set of 10 applications with known

memory corruption CVEs, listed in Table 4. �ese CVEs correspond

to arbitrary memory writes [16, 33, 34], ful�lling our AWP primitive

requirement. Table 4 contains the total number of all functional

blocks for each application. Although there are many functional

blocks, the di�culty of �nding stitchable dispatcher blocks makes

a signi�cant fraction of them unusable.

Basic block abstraction is a time consuming process – especially

for applications with large Control-Flow Graphs – whose results do

not change across iterations. As a performance optimization, BOPC

caches the resulting abstractions of the Binary Frontend (Figure 5)

to a �le and loads them for each search, thus avoiding the startup

overhead listed in Table 4.

To demonstrate the e�ectiveness of our algorithm, we chose

a set of 13 representative SPL payloads, shown in Table 5. Our

goal is to “map and run” each of these payloads on top each of

the vulnerable applications. Table 6 shows the results of running

each payload on. BOPC successfully �nds a mapping of memory

writes to encode an SPL payload as a set of side e�ects executed on

top of the applications for 105 out of 130 cases, approximately 81%.

In each case, the memory writes are su�cient to reconstruct the

payload execution by strictly following the CFG without violating

a strict CFI policy or stack integrity.

Table 6 shows that applications with large CFGs result in higher

success rates, as they encapsulate a “richer” set of BOP gadgets.

Achieving truly in�nite loops is hard in practice, as most of the

loops in our experiments involve some loop counter that is modi�ed

in each iteration. �is iterator serves as an index to dereference

an array. By falsifying the exit condition through modifying loop

variables (i.e., the loop in�nite), the program eventually terminates

with a segmentation fault, as it tries to access memory outside

of the current segment. �erefore, even though the loop would

run forever, an external factor (segmentation fault) causes it to

stop. BOPC aims to address this issue, by simulating the same loop

multiple times. However, �nding a truly in�nite loop, requires

BOPC to simulate it an in�nite number of times, which is infeasible.

For some cases, we managed to verify that the accessed memory

inside the loop is bounded and therefore the solution truly is an

in�nite loop. Otherwise the loop is arbitrarily bounded with the

upper bound set by an external factor.

For some payloads, BOPC was unable to �nd an exploit trace.

�is is is either due to imprecision of our algorithm, or because no

solution exists for the wri�en SPL payload. We can alleviate the

�rst failure by increasing the upper bounds and the timeouts in our

con�guration. Doing so, makes BOPC search more exhaustively at

the cost of search time.

�e non-existence of a solution is an interesting problem, as it

exposes the limitations of the vulnerable application. �is type of

failure is due to the “structure” of the application’s CFG, which

9

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Vulnerable Application CFG Time
(m:s)

Total number of functional blocks
Program Vulnerability Prim. Nodes Edges RegSet RegMod MemRd MemWr Call Cond Total
ProFTPd CVE-2006-5815 [5] AW 27,087 49,862 10:08 40,143 387 1,592 199 77 3,029 45,427

nginx CVE-2013-2028 [9] AW 24,169 44,645 12:36 31,497 1,168 1,522 279 35 3375 37,876

sudo CVE-2012-0809 [8] FMS 3,399 6,267 01:14 5,162 26 157 18 45 307 5715

orzh�pd BugtraqID 41956 [7] FMS 1,354 2,163 00:27 2,317 9 39 8 11 89 2473

wu�dp CVE-2000-0573 [1] FMS 8,899 17,092 03:22 14,101 62 274 11 94 921 15,463

nullh�pd CVE-2002-1496 [3] AW 1,488 2,701 00:27 2,327 77 54 7 19 125 2,609

opensshd CVE-2001-0144 [2] AW 6,688 12,487 01:53 8,800 98 214 19 63 558 9,752

wireshark CVE-2014-2299 [10] AW 74,186 162,111 29:41 12,4053 639 1,736 193 100 4555 131276

apache CVE-2006-3747 [4] AW 18,790 34,205 10:22 33,615 212 490 66 127 1,768 36,278

smbclient CVE-2009-1886 [6] FMS 166,081 351,309 82:25 265,980 1,481 6,791 951 119 28,705 304,027

Table 4: Vulnerable applications. �e Prim. column indicates the primitive type (AW = Arbitrary Write, FMS = ForMat String).
Time is the amount of time needed to generate the abstractions for every basic block. Functional blocks show the total number
for each of the statements (RegSet = Register Assignments, RegMod = Register Modi�cations, MemRd = Memory Load, MemWr =
Memory Store, Call = system/library calls, Cond = Conditional Jumps). Note that the number of call statements is small because
we are targeting a prede�ned set of calls. Also note that MemRd statements are a subset of RegSet statements.

Payload Description |S | �at?
regset4 Initialize 4 registers with arbitrary values 4 3

regref4 Initialize 4 registers with pointers to arbitrary memory 8 3

regset5 Initialize 5 registers with arbitrary values 5 3

regref5 Initialize 5 registers with pointers to arbitrary memory 10 3

regmod Initialize a register with an arbitrary value and modify it 3 3

memrd Read from arbitrary memory 4 3

memwr Write to arbitrary memory 5 3

print Display a message to stdout using write 6 3

execve Spawn a shell through execve 6 3

abloop Perform an arbitrarily long bounded loop utilizing regmod 2 7

in�oop Perform an in�nite loop that sets a register in its body 2 7

ifelse An if-else condition based on a register comparison 7 7

loop Conditional loop with register modi�cation 4 7

Table 5: SPL payloads. Each payload consists of |S | state-
ments. Payloads with �at delta graphs (i.e., have no jump
statements), are marked with 3.

prevents BOPC from �nding a trace for an SPL payload. A solution

may not exist due to one the following:

(1) �ere are not enough candidate blocks.

(2) �ere are no valid register / variable mappings.

(3) �ere are not enough functional blocks or no valid paths

between functional blocks.

(4) �e constraints between blocks are un-satis�able or sym-

bolic execution raised aa timeout.

In Section 3 we mention that the determination of the entry

point is part of the vulnerability discovery process. �erefore,

BOPC assumes that the entry point is given. Without having access

to actual exploits (or crashes), inference of entry points (and bugs)

is undetermined. Hence, we have selected arbitrary locations as the

entry points. �is allows BOPC to �nd payloads for the evaluation

without having access to concrete exploits. In practice, BOPC would

leverage the given entry points as starting points. We demonstrate

several test cases where the entry points are precisely at the start

of functions, deep in the Call Graph, to show the power of our

approach. Orthogonally, we allow for vulnerabilities to exist in the

middle of a function. In such situations, BOPC would set our entry

point to the location a�er the return of the function.

�e lack of the exact entry point complicates the veri�cation

of our solutions. We leverage a debugger to “simulate” the AWP

and modify the memory on the �y, as we reach the given entry

point. We ensure as we step through our trace that we maintain the

properties of the SPL payload expressed. �at is, blocks between

the statements are non-clobbering in terms of register allocation

and memory assignment.

7 CASE STUDY: NGINX
We utilize a version of the nginx web server with a known memory

corruption vulnerability [9] that has been exploited in the wild to

further study BOPC. When an HTTP header contains the “Transfer-

Encoding: chunked” a�ribute, nginx fails to properly length check

for the received packet chunks, resulting in stack bu�er over�ow.

�is bu�er over�ow [16] results in an arbitrary memory write,

ful�lling the AWP requirement. For our case study we select three

of the most interesting payloads: spawning a shell, an in�nite loop,

and a conditional branch. Table 7 shows metrics collected during

the BOPC execution for these cases.

7.1 Spawning a shell
Function ngx execute proc is invoked through a function

pointer, with the second argument (passed to rsi, according to

x64 calling convention), being a void pointer that is interpreted as

a struct to initialize all arguments of execve:

mov rbx, rsi
mov rdx, QWORD PTR [rsi+0x18]
mov rsi, QWORD PTR [rsi+0x10]
mov rdi, QWORD PTR [rbx]
call 0x402500 <execve@plt>

BOPC leverages this function to successfully synthesize the

execve payload (shown on the right side of Table 1) and gen-

erate a PoC exploit in less than a minute as shown in Table 7.

Assuming that rsi points to somewritable address x , BOPC pro-

duces the following (address,value, size) tuples: ($y, $x , 8), ($y +
8h, 0, 8), ($x , /bin/sh, 8), ($x + 10h, $y, 8), ($x + 18h, 0, 8), were $y
is a concrete writable addresses set by BOPC.

10

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Program SPL payload
regset4 regref4 regset5 regref5 regmod memrd memwr print execve abloop in�oop ifelse loop

ProFTPd 3 3 3 3 3 3 3 3 32 71 3 128+ 3 ∞ 3 3 3

nginx 3 3 3 3 3 3 3 74 3 3 128+ 3 ∞ 3 3 128

sudo 3 3 3 3 3 3 3 3 3 74 3 128+ 74 74
orzh�pd 3 3 3 3 3 3 3 74 71 74 3 128+ 74 73
wu�dp 3 3 3 3 3 3 3 3 71 3 128+ 3 128+ 74 73
nullh�pd 3 3 3 3 3 3 73 73 3 3 30 3 ∞ 74 73
opensshd 3 3 3 3 3 3 74 74 74 3 512 3 128+ 3 3 99

wireshark 3 3 3 3 3 3 3 3 4 71 3 128+ 3 7 3 3 8

apache 3 3 3 3 3 3 3 74 74 3 ∞ 3 128+ 3 74
smbclient 3 3 3 3 3 3 3 3 1 71 3 1057 3 128+ 3 3 256

Table 6: Feasibility of executing various SPL payloads for each of the vulnerable applications. An3means that the SPL payload
was successfully executed on the target binary while a 7 indicates a failure, with the subscript denoting the type of failure
(71 = Not enough candidate blocks, 72 = No valid register/variable mappings, 73 = No valid paths between functional blocks
and 74 = Un-satis�able constraints or solver timeout). Note that in the �rst two cases (71 and 72), we know that there is no
solution while, in the last two (73 and 74), a solution might exists, but BOPC cannot �nd it, either due to over-approximation
or timeouts. �e numbers next to the 3 in abloop, in�oop, and loop columns indicate the maximum number of iterations. �e
number next to the print column indicates the number of character successfully printed to the stdout.

Payload Time |CB | Mappings |δG | |Hk |
execve 0m:55s 10,407 142,355 1 1

in�oop 4m:45s 9,909 14 1 1

ifelse 1m:47s 10,782 182 4 2

Table 7: Performance metrics for BOPC on nginx. Time =
time to synthesize exploit, |CB | = # candidate blocks, Map-
pings = # concrete register and variable mappings, |δG | = #
delta graphs created, |Hk | = # of induced subgraphs tried.

7.2 In�nite loop
Here we present a payload that generates a trace that executes an

in�nite loop. �e in�oop payload, is an simple in�nite loop that

consists of only two statements:

void payload() {
LOOP:

__r1 = 0;
goto LOOP;

}

We set the entry point at the beginning of ngx signal -
handler functionwhich is a signal handler that is invoked through

a function pointer. Hence, this point is reachable through control-

�ow hijacking. �e solution synthesized by BOPC is shown in

Figure 6. �e box on the top-le� corner demonstrates how the

memory is initialized to satisfy the constraints.

Virtual register r0was mapped to hardware register r14, so
ngx signal handler contains three candidate blocks, marked

as octagons. Exactly one of them is selected to be the functional

block while the others are avoided by the dispatcher blocks. �e

dispatcher �nds a path from the entry point to the �rst functional

block and then, �nds a loop to return back to the same functional

block (highlighted with blue arrows). Note that the size of the

dispatcher block exceeds 20 basic blocks, while the functional block

consists of a single basic block.

�e oval nodes in Figure 6 indicate basic blocks that are outside

of the current function. At basic block 0x41C79F, function ngx -
time sigsafe update is invoked. Due to the shortest path

heuristic, BOPC, tries to execute as few basic blocks as possible from

this function. In order to do so BOPC sets ngx time lock a

non-zero value, thus causing this function to return quickly. BOPC

successfully synthesizes this payload in less than 5 minutes.

7.3 Conditional statements
�is case study shows an SPL if-else condition that implements

a logical NOT. �at is, if register r0 is zero, the payload sets

r1 to one, otherwise r1 becomes zero. �e execution trace

starts at the beginning of ngx cache manager process -
cycle. �is function is called through a function pointer. A part

of the CFG starting from this function is shown in Appendix D.

A�er trying 4 mappings, r0 and r1 map to rsi and r15
respectively. �e resulting delta graph is the shown in Figure 7.

As we mentioned in Section 5.6, when BOPC encounters a func-

tional block for a conditional statement, it clones the current state of
the symbolic execution and the two clones independently continue

the execution. �e constraints up to the conditional jump are the

following:

0x41eb23 : $rdi = ngx_cycle_t* cycle
0x40f709 : *(ngx_event_flags + 1) == 0x2
0x41dfe3 : __r0 = rsi = 0x0
0x403cdb : $r15 = 0x1

ngx_module_t ngx_core_module.index = 0
$alloca_1 = *cycle
ngx_core_conf_t* conf_ctx =

*$alloca_1 + ngx_core_module.index * 8
0x403d06 : test rsi, rsi (__r0 != 0)
0x403d09 : jne 0x403d1b <ngx_set_environment+64>

If the condition is false and the jump is not taken, the following
constraints are also added to the state.

0x403d0b : conf_ctx->environment != 0
0x403fd9 : __r1 = *($stack - 0x178) = 1;

When the condition is true, the execution trace will follow the

“taken” branch of the trace. In this case the shortest path to the next

functional block is 403d1b → 403d3d → 403d4b → 403d54 →
403d5a → 403f b4 with a total length 6. Unfortunately, this cannot

be used as a dispatcher block, due to an exception that is raised

at 403d4b. �e register rsi, is 1 and therefore when we a�empt

11

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

41cb6c

41cbaa

41cae2

41cafa

41ca27

41ca2c

41cc5f

41cc79

41cb0b

41cb10

41c791

41c79f

41ca50

41cb46 41ca60

41cc48

41cc52

41c994

41c9ac

41c9ea

41c9fb

41ca18

41cbac

41cbbd

41cbe6

41c910

41c91e41c9a1

41ccc3

41cce7

41c9bd

41c9e5

41c783

41c787

41c900

41cb09 41cacd

41cced

41c7bf

41c8f2 41c96d

41ca40

41ca4b

41ca84

41ca8f

41ca97

41ccad

41ccb2

41c7cd

41cac8

41c8f7

41cc8c

41cc95

41cb50

41cb5b

41c7a4

41c7b141c7c4

41ca7c

4027d0

41c93f41cc39

41ca22

41c750

41c765

402220

41c97a

41cc7f

41ca9b

41c778

41c79a

41c77c

41cc0f

41cbed

41cab0

41cb3f

41cbfe

40e10f

41cb36

41caff

41ca77

41c793

41c956

1000038

40e223

1000308

 41C765: signals.signo == 0
 40E10F: ngx_time_lock != 0
 41C7B1: ngx_process ­ 3 > 1
 41C9AC: ngx_cycle = $alloc_1
 $alloc_1­>log = $alloc_2
 $alloc_2­>log_level <= 5
 41CA18: signo == 17
 41CA4B: waitpid() return value != {0, ­1}
 41cA50: ngx_last_process == 0
 41CB50: *($stack ­ 0x03C) & 0x7F != 0
 41CB5B: $alloc_2­>log_level <= 1
 41CBE6: *($stack ­ 0x03C + 1) != 2
 41CC48: ngx_accept_mutex_ptr == 0
 41CC5F: ngx_cycle­>shared_memory.part.elts = 0
 __r0 = r14 = 0
 41CC79: ngx_cycle­>shared_memory.part.nelts <= 0
 41CC7F: ngx_cycle­>shared_memory.part.next == 0

In function

Out of function

Functional block

Dispatcher path

Figure 6: CFG of nginx’s ngx signal handler and pay-
load for an in�nite loop (blue arrow dispatcher blocks, oc-
tagons functional blocks) with the entry point at the func-
tion start. �e top box shows the memory layout initializa-
tion for this loop. �is graph was created by BOPC.

to execute the following instruction: cmp BYTE PTR [rsi],
54h, we essentially try to dereference address 1. BOPC is aware

of this exception, so it discards the current path and tries with the

second shortest path. �e second shortest path has length 7 and

avoids the problematic block: 403d1b → 403d8b → 4050ba →
40511c → 40513a → 403d9c → 403da5→ 403f b4. �is results in

a new set of constraints as shown below:

Statement #12

Statement #2

Statement #0

Statement #4

Statement #16

Statement #6

41eb23

403d4b

8

403d6c

10

404d5a

13

407887

36

407a1c

40

41dfe3

4

41e02a

11

403cdb

INF INF INF INF INF 1 INF

403e4e

10

403fd9

2

403e4e

10

403ebb

19

403fb4

6

403fd9

2

 -1

0 0 0 0 0 0

Figure 7: A delta graph instance for an ifelse payload for ng-
inx. �e �rst node is the entry point. Blue nodes and edges
form the minimum induced subgraph, Hk . Statement #4 is con-
ditional, execution branches into two statements. Note that
BOPC created this graph.

0x403d1b : conf_ctx->env.elts = &elt (ngx_array_t*)
conf_ctx->env.nelts == 0

0x4050ba : conf_ctx->env.nelts != $alloca_2->env.nalloc
0x40511c : conf_ctx->env.nelts += 1
0x40513a : $ret = conf_ctx->env.elts +

conf_ctx->env.nelts*conf_ctx->env.size
0x403d9c : $ret != 0
0x403da5 : conf_ctx->env.nelts != 0
0x403fb4 : __r1 = r15 = 0

8 DISCUSSION AND FUTUREWORK
Our prototype demonstrates the feasibility and scalability of auto-

matic construction of BOP chains through a high level language.

However, we note some potential optimizations that we consider

for future versions of BOPC.

BOPC is limited by the granularity of basic blocks. �at is, a

combination of basic blocks could potentially lead to the execution

of a desired SPL statement, while individual blocks might not. Take

for instance an instruction that sets a virtual register to 1. Assume

that a basic block initializes rcx to 0, while the following block

increments it by 1; a pa�ern commonly encountered in loops. Al-

though there is no functional block that directly sets rcx to 1, the

combination of the previous two has the desired e�ect. BOPC can

be expanded to address this issue if the basic blocks are coalesced

into larger blocks that result in a new CFG.

BOPC sets several upper bounds de�ned by user inputs. �ese

con�gurable bounds include the upper limit of (i) SPL payload per-

mutations (P), (ii) length of continuous blocks (L), (iii) of minimum

induced subgraphs extracted from the delta graph (N), and (iv) dis-

patcher paths between a pair of functional blocks (K). �ese upper

bounds along with the timeout for symbolic execution, reduce the

search space, but prune some potentially valid solutions. �e eval-

uation of higher limits may result to alternate or more solutions

being found by BOPC.

12

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

9 CONCLUSION
Despite the deployment of strong control-�ow hijack defenses such

as CFI or shadow stacks, data-only code reuse a�acks remain pos-

sible. So far, con�guring these a�acks relies on complex manual

analysis to satisfy restrictive constraints for execution paths.

Our BOPC mechanism automates the analysis of the remain-

ing a�ack surface and synthesis of exploit payloads. To abstract

complexity from target programs and architectures, the payload is

expressed in a high-level language. Our novel code reuse technique,

Block Oriented Programming, maps statements of the payload to

functional basic blocks. Functional blocks are stitched together

through dispatcher blocks that satisfy the program CFG and avoid

clobbering functional blocks. To �nd a solution for this NP-hard

problem, we develop heuristics to prune the search space and to

evaluate the most probable paths �rst.

�e evaluation demonstrates that the majority of 13 payloads,

ranging from typical exploit payloads to loops and conditionals are

successfully mapped 81% of the time across 10 programs. Upon

acceptance, we will release the source code of our proof of concept

prototype along with all of our evaluation results.

REFERENCES
[1] CVE-2000-0573: Format string vulnerability in wu-�pd 2.6.0. h�ps://cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2000-0573, 2001.

[2] CVE-2001-0144: Integer over�ow in openssh 1.2.27. h�ps://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2001-0144, 2001.

[3] CVE-2002-1496: Heap-based bu�er over�ow in null h�p server 0.5.0. h�ps:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496, 2004.

[4] CVE-2006-3747: O�-by-one error in apache 1.3.34. Available from MITRE, CVE-

ID CVE-2006-3747, 2006.

[5] CVE-2006-5815: Stack bu�er over�ow in pro�pd 1.3.0. h�ps://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2006-5815, 2006.

[6] CVE-2009-1886: Format string vulnerability in smbclient 3.2.12. h�ps://cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2009-1886, 2009.

[7] Orzh�pd - format string. h�ps://www.exploit-db.com/exploits/10282/, 2009.

[8] CVE-2012-0809: Format string vulnerability in sudo 1.8.3. h�ps://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2012-0809, 2012.

[9] CVE-2013-2028: Nginx h�p server chunked encoding bu�er over�ow 1.4.0.

h�ps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028, 2013.

[10] CVE-2014-2299: Bu�er over�ow in wireshark 1.8.0. h�ps://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2014-2299, 2014.

[11] Abadi, M., Budiu, M., Erlingsson, Ú., and Ligatti, J. Control-�ow integrity

principles, implementations, and applications. ACM Transactions on Information
and System Security (TISSEC) (2009).

[12] Avgerinos, T., Cha, S. K., Rebert, A., Schwartz, E. J., Woo, M., and Brumley,

D. Automatic exploit generation. Communications of the ACM 57, 2 (2014), 74–84.
[13] Bletsch, T., Jiang, X., Freeh, V. W., and Liang, Z. Jump-oriented programming:

a new class of code-reuse a�ack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security (2011).

[14] Burow, N., Carr, S. A., Brunthaler, S., Payer, M., Nash, J., Larsen, P., and

Franz, M. Control-�ow integrity: Precision, security, and performance. ACM
Computing Surveys (CSUR) (2018).

[15] Cadar, C., Dunbar, D., Engler, D. R., et al. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In OSDI (2008).
[16] Carlini, N., Barresi, A., Payer, M., Wagner, D., and Gross, T. R. Control-�ow

bending: On the e�ectiveness of control-�ow integrity. In USENIX Security
(2015).

[17] Carlini, N., and Wagner, D. ROP is still dangerous: Breaking modern defenses.

In USENIX Security (2014).

[18] Castro, M., Costa, M., and Harris, T. Securing so�ware by enforcing data-�ow

integrity. In Proceedings of the 7th symposium on Operating systems design and
implementation (2006).

[19] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., and

Winandy, M. Return-oriented programming without returns. In Proceedings of
the 17th ACM conference on Computer and communications security (2010).

[20] Cheng, Y., Zhou, Z., Miao, Y., Ding, X., DENG, H., et al. ROPecker: A generic

and practical approach for defending against ROP a�ack.

[21] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. Introduction to
Algorithms. �e MIT press, 2009.

[22] Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A.,

Wagle, P., Zhang, Q., and Hinton, H. Stackguard: automatic adaptive detection

and prevention of bu�er-over�ow a�acks. In Usenix Security (1998).

[23] Dang, T. H., Maniatis, P., and Wagner, D. �e performance cost of shadow

stacks and stack canaries. In Proceedings of the 10th ACM Symposium on Infor-
mation, Computer and Communications Security (2015), ACM, pp. 555–566.

[24] Davi, L., Sadeghi, A.-R., Lehmann, D., and Monrose, F. Stitching the gadgets:

On the ine�ectiveness of coarse-grained control-�ow integrity protection. In

USENIX Security (2014).

[25] Davi, L., Sadeghi, A.-R., and Winandy, M. ROPdefender: A detection tool to

defend against return-oriented programming a�acks. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security (2011).

[26] Designer, S. return-to-libc a�ack. Bugtraq, Aug (1997).

[27] Ding, R., Qian, C., Song, C., Harris, B., Kim, T., and Lee, W. E�cient protection

of path-sensitive control security.

[28] Durden, T. Bypassing PaX ASLR protection. Phrack magazine #59 (2002).
[29] Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H., and

Sidiroglou-Douskos, S. Control jujutsu: On the weaknesses of �ne-grained

control �ow integrity. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (2015).

[30] Follner, A., Bartel, A., Peng, H., Chang, Y.-C., Ispoglou, K., Payer, M., and

Bodden, E. PSHAPE: Automatically combining gadgets for arbitrary method

execution. In International Workshop on Security and Trust Management (2016).
[31] Göktas, E., Athanasopoulos, E., Bos, H., and Portokalidis, G. Out of control:

Overcoming control-�ow integrity. In Security and Privacy (SP), 2014 IEEE
Symposium on (2014).

[32] Homescu, A., Stewart, M., Larsen, P., Brunthaler, S., and Franz, M. Mi-

crogadgets: size does ma�er in turing-complete return-oriented programming.

In Proceedings of the 6th USENIX conference on O�ensive Technologies (2012),
USENIX Association, pp. 7–7.

[33] Hu, H., Chua, Z. L., Adrian, S., Saxena, P., and Liang, Z. Automatic generation

of data-oriented exploits. In USENIX Security (2015).

[34] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and Liang, Z. Data-

oriented programming: On the expressiveness of non-control data a�acks. In

Security and Privacy (SP), 2016 IEEE Symposium on (2016).

[35] Jacobson, E. R., Bernat, A. R., Williams, W. R., and Miller, B. P. Detecting code

reuse a�acks with a model of conformant program execution. In International
Symposium on Engineering Secure So�ware and Systems (2014).

[36] Kahn, A. B. Topological sorting of large networks. Communications of the ACM
(1962).

[37] Katoch, V. Whitepaper on bypassing aslr/dep. Tech. rep., Secfence, Tech. Rep.,

September 2011.[Online]. Available: h�p://www.exploit-db.com/wp-content/

themes/exploit/docs/17914.pdf.

[38] Kil3r, and Bulba. Bypassing stackguard and stackshield. Phrack magazine #53
(2000).

[39] King, J. C. Symbolic execution and program testing. Communications of the
ACM (1976).

[40] Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., and Song, D.

Code-pointer integrity. In OSDI (2014), vol. 14, p. 00000.
[41] Microsoft. Visual studio 2015 — compiler options — enable control �ow guard,

2015. h�ps://msdn.microso�.com/en-us/library/dn919635.aspx.

[42] Müller, T. ASLR smack & laugh reference. Seminar on Advanced Exploitation
Techniques (2008).

[43] Müller, U. Brainfuck–an eight-instruction turing-complete programming lan-

guage. Available at the Internet address h�p://en. wikipedia. org/wiki/Brainfuck
(1993).

[44] Niu, B., and Tan, G. Modular control-�ow integrity. ACM SIGPLAN Notices 49
(2014).

[45] Niu, B., and Tan, G. Per-input control-�ow integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (2015).

[46] Pakt. ropc: A turing complete rop compiler. h�ps://github.com/pakt/ropc, 2013.

[47] Pappas, V. kBouncer: E�cient and transparent rop mitigation. tech. rep. Citeseer
(2012).

[48] PAX-TEAM. Pax aslr (address space layout randomization). h�p://pax.grsecurity.

net/docs/aslr.txt, 2003.

[49] Payer, M., Barresi, A., and Gross, T. R. Fine-grained control-�ow integrity

through binary hardening. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (2015).

[50] Polychronakis, M., and Keromytis, A. D. ROP payload detection using specu-

lative code execution. In Malicious and Unwanted So�ware (MALWARE), 2011
6th International Conference on (2011).

[51] Richarte, G., et al. Four di�erent tricks to bypass stackshield and stackguard

protection. World Wide Web (2002).
[52] Salwan, J., and Wirth, A. ROPGadget. h�ps://github.com/JonathanSalwan/

ROPgadget, 2012.

[53] Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., and Holz,

T. Counterfeit object-oriented programming: On the di�culty of preventing

code reuse a�acks in c++ applications. In Security and Privacy (SP), 2015 IEEE

13

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://www.exploit-db.com/exploits/10282/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
https://msdn.microsoft.com/en-us/library/dn919635.aspx
https://github.com/pakt/ropc
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

Symposium on (2015).

[54] Schwartz, E. J., Avgerinos, T., and Brumley, D. Q: Exploit hardening made

easy. In USENIX Security Symposium (2011).

[55] Sen, K., Marinov, D., and Agha, G. Cute: a concolic unit testing engine for c.

In ACM SIGSOFT So�ware Engineering Notes (2005), vol. 30, ACM, pp. 263–272.

[56] Shacham, H. �e Geometry of Innocent Flesh on the Bone: Return-into-libc

without Function Calls (on the x86). In Proceedings of CCS 2007 (Oct. 2007),

S. De Capitani di Vimercati and P. Syverson, Eds., ACM Press, pp. 552–61.

[57] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and Boneh, D.

On the e�ectiveness of address-space randomization. In Proceedings of the 11th
ACM conference on Computer and communications security (2004).

[58] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher,

A., Grosen, J., Feng, S., Hauser, C., Kruegel, C., et al. SOK:(State of) �e Art

of War: O�ensive Techniques in Binary Analysis. In Security and Privacy (SP),
2016 IEEE Symposium on (2016).

[59] Tang, J., and Team, T. M. T. S. Exploring control �ow guard in windows

10. Available at ”h�p://blog.trendmicro.com/trendlabs-security-intelligence/
exploring-control-�ow-guard-in-windows-10” (2015).

[60] The Chromium Projects. Control Flow Integrity �e Chromium Projects.

”h�ps://www.chromium.org/developers/testing/control-�ow-integrity”.

[61] Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú.,

Lozano, L., and Pike, G. Enforcing forward-edge control-�ow integrity in

GCC & LLVM. In USENIX Security (2014).

[62] Uno, T. Algorithms for enumerating all perfect, maximum and maximal match-

ings in bipartite graphs. Algorithms and Computation (1997).

[63] van de Ven, A., and Molnar, I. Exec shield. h�ps://www.redhat.com/f/pdf/

rhel/WHP0006US Execshield.pdf, 2004.

[64] van der Veen, V., Andriesse, D., Göktaş, E., Gras, B., Sambuc, L., Slowinska,

A., Bos, H., and Giuffrida, C. Practical Context-Sensitive CFI. In Proceedings of
the 22nd Conference on Computer and Communications Security (CCS’15) (October
2015).

[65] van der Veen, V., Andriesse, D., Stamatogiannakis, M., Chen, X., Bos, H.,

and Giuffrida, C. �e dynamics of innocent �esh on the bone: Code reuse ten

years later. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017 (2017), pp. 1675–1689.

[66] Wojtczuk, R. �e advanced return-into-lib (c) exploits: Pax case study. Phrack
Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001).

[67] Yen, J. Y. Finding the k shortest loopless paths in a network. management Science
17, 11 (1971), 712–716.

A EXTENDED BACKUS-NAUR FORM OF SPL

〈SPL〉 ::= void payload() { 〈stmts〉 }
〈stmts〉 ::= (〈stmt〉 | 〈label〉)* 〈return〉?
〈stmt〉 ::= 〈varset〉 | 〈regset〉 | 〈regmod〉 | 〈call〉

| 〈memwr〉 | 〈memrd〉 | 〈cond〉 | 〈jump〉

〈varset〉 ::= int64 〈var〉 = 〈rvalue〉;
| int64* 〈var〉 = {〈rvalue〉 (, 〈rvalue〉)*};
| string 〈var〉 = 〈str〉;

〈regset〉 ::= 〈reg〉 = 〈rvalue〉;
〈regmod〉 ::= 〈reg〉 〈op〉= 〈number〉;
〈memwr〉 ::= *〈reg〉 = 〈reg〉;
〈memrd〉 ::= 〈reg〉 = *〈reg〉;
〈call〉 ::= 〈var〉 ((ϵ | 〈reg〉 (, 〈reg〉)*);
〈label〉 ::= 〈var〉:
〈cond〉 ::= if (〈reg〉 〈cmpop〉 〈number〉) goto 〈var〉;
〈jump〉 ::= goto 〈var〉;
〈return〉 ::= returnto 〈number〉;

〈reg〉 := ‘__r’〈regid〉
〈regid〉 := [0-7]

〈var〉 := [a-zA-Z][a-zA-Z 0-9]*

〈number〉 := (‘+’ | ‘-’) [0-9]+ | ‘0x’[0-9a-fA-F]+
〈rvalue〉 := 〈number〉 | ‘&’ 〈var〉
〈str〉 := [.]*

〈op〉 := ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘&’ | ‘|’ | ‘˜’ | ‘<<’ | ‘<<’
〈cmpop〉 := ‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

B STITCHING BOP GADGETS IS NP-HARD
We present the NP-hardness proof for the BOP Gadget stitching

problem. �is problem reduces to the problem of �nding the mini-
mum induced subgraph Hk in a delta graph. Furthermore, we show

that this problem cannot even be approximated.

Let δG be a multipartite directed weighted delta graph with k
sets. Our goal is to select exactly one node (i.e., functional block)

from each set and form the induced subgraph Hk , such that the total

weight of all of edges is minimized:

min

Hk ⊂δG

∑
e ∈Hk

distance(e) (2)

A δG is �at, when all edges from ith set are towards (i + 1)th set.

�e nodes and the black edges in Figure 8 are such an example. In

this case, the minimum induced subgraph, is the minimum among

all shortest paths that start from some node in the �rst set and end

in any node in the last set. However, if the δG is not �at (i.e., the
SPL payload contains jump statements, so edges from ith set can

go anywhere), the shortest path approach does not work any more.

Going back in Figure 8, if we make some loops (add the blue edges),

the previous approach does not give the correct solution.

It turns out that the problem is NP-hard if the δG is not �at . To

prove this, we will use a reduction from K-Clique: First we apply
some equivalent transformations to the problem. Instead of having

K independent sets, we add an edge with∞ weight between every

14

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

A1 A2 A3

B1 B2

C1

D2D1 D3

8 12 42

11 13

7 17

11 1050

17

∞ ∞

∞

∞ ∞

∞

∞

Figure 8: An delta graph instance. �e nodes along the black
edges form a flat delta graph. In this case, the minimum in-
duced subgraph, Hk is A3,B1,C1,D1, with a total weight of 20,
which is also the shortest path from A3 to D1. When delta
graph is not �at (assume that we add the blue edges), the
shortest path nodes constitute an induced subgraph with a
total weight of 70. However Hk has total weight 34 and con-
tains A3,B2,C1,D2. Finally, the problem of �nding the min-
imum induced subgraph becomes equivalent to �nding a k-
clique if we add the red edges with∞ cost between all nodes
in the same set.

pair on the same set, as shown in Figure 8 (red edges). �en, the

minimum weight K-induced subgraph Hk , cannot have two nodes

from the same layer, as this would imply that Hk contains an edge

with∞ weight.

Let R be an undirected un-weighted graph that we want to

check whether it has a k-clique. �at is, we want to check whether

clique(R,k) is True or not. �us, we create a new directed graph

R′ as follows:

• R′ contains all the nodes from R
• ∀ edge (u,v) ∈ R, we add the edges (u,v) and (v,u) in R′

withweiдht = 0

• ∀ edge (u,v) < R, we add the edges (u,v) and (v,u) in R′

withweiдht = ∞
�en we try to �nd the minimum weight k-induced subgraph Hk

in R′. It is true that:∑
e ∈Hk

weiдht(e) < ∞⇔ clique(R,k) = True

:⇒ If the total edge weight of Hk is not∞, this implies that for

every pair of nodes in Hk , there is an edge with weight 1 in R′ and
thus an edge in R. �is by de�nition means that the nodes of Hk
form a k-clique in R. Otherwise (the total edge weight of Hk is∞)
it means that it does not exist a set of k nodes in R′ that has all edge
weights < ∞.

:⇐ If R has a k-clique, then there will be a set of k nodes that are

fully connected. �is set of nodes will have no edge with∞ weight

in R′. �us, these nodes will form an induced subgraph of R′ and
the total weight will be smaller than∞.

�is completes the proof that �nding the minimum induced

subgraph in δG is NP-hard. However, no (multiplicative) approxi-

mation algorithm does exists, as it would also solve the K-Clique

problem (it must return 0 if there is a K-Clique).

C SPL IS TURING-COMPLETE
We present a constructive proof of Turing-completeness through

building an interpreter for Brainfuck [43], a Turing-complete lan-

guage in the following listing. �is interpreter is wri�en using SPL

with a Brainfuck program provided as input in the SPL payload.

1 int64 *tape = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2 string input = ".+[.+]";
3 __r0 = &tape; // Data pointer
4 __r2 = &input; // Instruction pointer
5 __r6 = 0; // STDIN
6 __r7 = 1; // STDOUT
7 __r8 = 1; // Count arg for write/read
8 NEXT: __r1 = *__r2;
9 if (__r1 != 0x3e) goto LESS; // '>'
10 __r0 += 1;
11 LESS: if (__r1 != 0x3c) goto PLUS; // '<'
12 __r0 -= 1;
13 PLUS: if (__r1 != 0x2b) goto MINUS; // '+'
14 *__r0 += 1;
15 MINUS: if (__r1 != 0x2d) goto DOT; // '-'
16 *__r0 -= 1;
17 DOT: if (__r1 != 0x2e) goto COMMA; // '.'
18 write(__r7, __r0, __r8);
19 COMMA: if (__r1 != 0x2c) goto OPEN; // ','
20 read(__r6, *__r0, __r8);
21 OPEN: if (__r1 != 0x5b) goto CLOSE; // '['
22 if (__r0 != 0) goto CLOSE;
23 __r3 = 1; // Loop depth counter
24 FIND_C: if (__r3 <= 0) goto CLOSE;
25 __r2 += 1;
26 __r1 = *__r2;
27 if (__r1 != 0x5b) goto CHECK_C; // '['
28 __r3 += 1;
29 CHECK_C: if (__r1 != 0x5d) goto FIND_C; // ']'
30 __r3 -= 1;
31 goto FIND_C;
32 CLOSE: if (__r1 != 0x5d) goto END; // ']'
33 if (__r0 != 0) goto END;
34 __r3 = 1; // Loop depth counter
35 FIND_O: if (__r3 <= 0) goto END;
36 __r2 -= 1;
37 __r1 = *__r2;
38 if (__r1 != 0x5b) goto CHECK_O; // '['
39 __r3 -= 1;
40 CHECK_O: if (__r1 != 0x5d) goto FIND_O; // ']'
41 __r3 += 1;
42 goto FIND_O;
43 END: __r2 += 1;
44 goto NEXT;

D CFG OF NGINX AFTER PRUNING
�e following graph, is a portion of nginx’s CFG that includes func-

tion calls starting from the function ngx cache manager -
process cycle. �e graph only displays functions which are

15

Block Oriented Programming: Automating Data-Only A�acks Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, Mathias Payer

up to 3 function calls deep to simplify visualization. Note the reduc-

tion in search space–which is a result of BOPC’s pruning–as this

portion of the CFG reduces to the small delta graph in Figure 7.

40c6a3

40c6ac 40c6b1

40c8f8

40c8fc40c5e6

40c5f0

41e0c9

41e0df

4117af

4117f5

4117be

4043b3

4043b6

418a7b

418a99

418a8c

41153c

40429e

41155b

404422

4044c8

40442c

40f791

40f7a1

41e06c

41e0bf

41e076

40c4f4

40c50e

40c588

40c593

41ec8b

41ec93

4189db

404407

40440f

418acb

418ad3

411617

411636

40c574

40c57e40c584

41e1ad

402880

40c5c4

40c5c8

4115d2

4115f6

41ec81

411441

41ebfc

41ec1e

41ec05

418ac1

418ad5

41e3e8

41e3ed

41e417

40c9cf

40c9d9

4116f3

411726

411702

41e25e

41e282

41e1c8

41e1fa

41e1d4

40c94d

40c95740c95d

40c6fb

40c6ff

41e2fe

41e308

411760

4117a6

40c81a

40c83b40c824

41e172

41e17a

41e31c

418a4f

418a5e

418a55

40c4a2

40c4a6

41e3c3

41e3cd

40f78a

40f7b3

418aad

418aa3

41169f

4116d7

4116a4

40f82c

40f836

40f857

41146c

411473

41148a

40c89d

40c846

40c912

40c937

40c93b

40c51b

40c542 40c521

41e488

41e49841e48e

41e23f

41e244

41e190

40c7a0

40c7b140c90c

40f83b

40f7de

40f7fa

41e1d9

41e112

41e2b8

41e2c1

41e02a

41e039

40c9c0

411603

411612

40c4fa

40c50440c50a

4114de

4114e3

41e207

41e235

41e213

41e0a2

40f770

40f78c 40f77c

41ec13

41177e

411783

40c49c

41e385

41e38a

41e165

41e16a

41eca0

41d8d1

41d8e6

40c419

40c41f

41e293

41e298

4115fe

41e005

41e321

41e32c

41e34a

41eb5c

41eb69

40f889

41eb42

40ca62

41ebde

41173e

411743

40c7bb

40c7e0

40c7e4

40447f

404485

4044ef

40c492

418a49

418a65

4115be

4115cd

40c691

40c6ba

40f7ca

40f7cf

4116b8

40c8e8

40c8f2

40430c

4042cc

40c863

40c867

41164c

4044c6

41e17f 41e1b7

41e2d7

41e2f4

418ab2

418ab7

41e11c

41e132

411678

411697

41e357

41e35c

40c460

40c469

40c4b1

40c5f8

41e218

404399

41eb6c

41e3d2

41e3db

40f804

40f80e

40f817

40c47e

40c47a

40c80a

41e251

40c4e2

40c4e6

41e0e4

41e0f0

40ca58

40c772

40c776

41e428

41e442

40c87940c874

418a3f

40f756

40f766

40f7c2

4116ee

40c435

40c43f

404448

40444b

40c601

40c60f40c424

4117dc

40c806

40c3fc

40c613

40c48c 40c88940c883

41eb23

40f709

40f716

40f74c

40f873

404475

41ec15

41ec4b

41d902

41eba7

41e18b

40c800

411762

41e2c6

41e2d2

40431c

404337

40c6bf

411664

411673

411528

411537

411563

41e3e3

41e137

41e143

41ec28

41ec41

40ca2f

40ca48

41e3fe

41172e

411733

411481

40c765

40c769

41e447

41e470

41e452

40c8d6

40c8e3

41e023

40c9d5

41dfe3

40c992

40c9b3

40c9af

41e0f5

40c54b

40c55c

40c560

40c948

41e03e

41e04a

41e148

40c8d2

41e393

41e3a8

41e331

4117c8

4117cd 4114a6

4114af

4114c7

4115054114cf

41e202

41e379

40438d

41e287

41e2b1

40436c

40c82e

40ca53

411568

41159b

411577

418ae2

40448e

4044b3

40c6e6

41e398

41ebf7

41e000

41e00f

40c79e

40c971

4115b9

40441f

40c70e

40c704

40ca3e

41e3b9

41e04f

41e3f9

40c961

41d8a7

40c74340c748

404435

40c7f1

411707

40ca44

40c88d

41d8f2

40f7bb

4115a9

40c56e

411510

403cdb

40c5ec

418a14

418a20

418a2d

41ebe3

41ebbc

40c6b7

41157c

40c9c5

40c3e6

40c97b

40c985

41e457

4117d7

40f827

40ca34

40c75c

41e08c

41e091

41ec68

41e1c3

4116b3

41165f

4117a2

411500

40f7a3

41e39e

41e24c

40c758

41e09d

41176a

41ec54

41ebcf

40c684

40c69a

4189ff

418a0a

40c9e9

40f7d9

418a04

40ca1e

40ca22

411523

41176f

40c5dc

40c7f6

40c5d6

41149d

418a35

40c752

40c6f5

403d9c

403da5403fa6

403fb4

40513a

403d1b

403d0b 403d8b

4050ba

40511c

403fd9

16

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Control Flow Integrity
	2.2 Shadow Stacks
	2.3 Data-only Attacks

	3 Assumptions and Threat Model
	4 Design
	4.1 Expressing Payloads
	4.2 Selecting functional blocks
	4.3 Finding BOP gadgets
	4.4 Searching for dispatcher blocks
	4.5 Stitching BOP gadgets

	5 Implementation
	5.1 Binary Frontend
	5.2 SPL Frontend
	5.3 Locating candidate block sets
	5.4 Identifying functional block sets
	5.5 Selecting functional blocks
	5.6 Discovering dispatcher blocks
	5.7 Synthesizing exploit from execution trace

	6 Evaluation
	7 Case Study: nginx
	7.1 Spawning a shell
	7.2 Infinite loop
	7.3 Conditional statements

	8 Discussion and Future Work
	9 Conclusion
	References
	A Extended Backus-Naur Form of SPL
	B Stitching BOP Gadgets is NP-Hard
	C SPL is Turing-complete
	D CFG of nginx after pruning

