
Memory Leak Detection Based On Memory State Transition Graph

Zhenbo Xu
Department of Computer Science and Technology
University of Science and Technology of China

Email: xuzb@ios.ac.cn

Jian Zhang, Zhongxing Xu
State Key Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences
Email: {zj, xzx}@ios.ac.cn

Abstract—Memory leak is a common type of defect that
is hard to detect manually. Existing memory leak detection
tools suffer from lack of precise interprocedural alias and
path conditions. To address this problem, we present a static
interprocedural analysis algorithm, which captures memory
actions and path conditions precisely, to detect memory leak
in C programs. Our algorithm uses path-sensitive symbolic
execution to track the memory actions in different program
paths guarded by path conditions. A novel analysis model
called Memory State Transition Graph (MSTG) is proposed to
describe the tracking process and its results. An MSTG is gen-
erated from a procedure. Nodes in an MSTG contain states of
memory objects which record the function behaviors precisely.
Edges in an MSTG are annotated with path conditions collected
by symbolic execution. The path conditions are checked for
satisfiability to reduce the number of false alarms and the
path explosion. In order to do interprocedural analysis, our
algorithm generates a summary for each procedure from the
MSTG and applies the summary at the procedure’s call sites.
Our implemented tool has found several memory leak bugs in
some open source programs and detected more bugs than other
tools in some programs from the SPEC2000 benchmarks. In
some cases, our tool produces many false positives, but most
of them are caused by the same code patterns which are easy
to check.

Keywords-memory leak; bug finding; static analysis; sym-
bolic execution;

I. INTRODUCTION

Memory leak is a common type of defect in software sys-
tems written in languages with explicit memory management
like C or C++. It occurs when dynamically allocated memory
has never been freed, which consumes the available memory
of the system and degenerates the system performance.
Eventually, the available memory may be exhausted and
causes the system to crash.

This paper presents a static interprocedural analysis al-
gorithm based on Memory State Transition Graph (MSTG)
to detect memory leak in C programs. The following list
describes the main features of our algorithm.

• Concise memory abstraction is used to model mem-
ory objects related to memory leak as two kinds, i.e.
heap objects and external objects. The heap objects
that denote the memory allocated in the heap space
are checked for the existence of leaked state and the
external objects that represent the unknown memory

inside a procedure (such as a memory object passed in
by a global pointer) provide alias information during
interprocedural analysis. Generally, “memory objects”
in this paper refer to heap objects or external objects.

• A novel analysis model called Memory State Tran-
sition Graph (MSTG) is proposed to analyze the C
programs. Each MSTG is generated from a procedure
by using path-sensitive symbolic execution. The states
of memory objects contained in MSTG’s nodes indicate
whether leaked states exist in the procedure. Memory
actions as supplemental data of states can capture the
function behaviors precisely. Predicates, namely path
conditions annotated on MSTG’s edges, are checked
for satisfiability to reduce the number of false alarms
and the path explosion.

• Precise procedure summaries generated from MSTGs
store the memory actions and the path conditions. When
applying the summaries, the memory actions are used to
capture procedure’s side-effects and the path conditions
are checked for satisfiability to prune the infeasible
memory actions. It also helps to reduce the number
of false alarms and the path explosion.

We have applied our tool to some GNU open source projects.
Five bugs were found in wget and one bug in which. Com-
pared with a summary-based path-sensitive memory leak
detector [1], our tool found more bugs. We have also applied
it to analyze some programs in SPEC2000 benchmarks. The
experimental results show that some extra bugs were found
by our tool while other tools [2]–[4] missed them.

The remainder of the paper is organized as follows.
Section II gives a motivating example to show the effec-
tiveness of our memory leak detector. Section III describes
our algorithm framework. Section IV introduces our in-
traprocedural analysis model including memory abstraction
and memory state transition graph. Section V describes the
interprocedural analysis including summary generation and
summary application. Limitations are discussed in Section
VI. Experimental results are shown in Section VII. Related
work is discussed in Section VIII, and the conclusion and
future works are given in Section IX.

2011 18th Asia-Pacific Software Engineering Conference

1530-1362/11 $26.00 © 2011 IEEE

DOI 10.1109/APSC.2011.22

33

2011 18th Asia-Pacific Software Engineering Conference

1530-1362/11 $26.00 © 2011 IEEE

DOI 10.1109/APSEC.2011.22

33

II. MOTIVATION AND EXAMPLES

This section will use a motivating example to illustrate
the weaknesses of existing tools in Section II-A and the
effectiveness of our memory leak detector in Section II-B.

A. Weaknesses of Existing Tools

The ability of existing tools are mainly limited by path-
insensitivity and imprecise summaries of function behaviors.
The code fragment in Figure 1, which is used to describe the
necessity of recording precise memory actions and path con-
ditions, is a simplified version of some real world programs
such as Samba and the Linux kernel. The bufSelect
function in this figure manipulates a selection between a
smaller but faster buffer and a larger but slower heap buffer.
The selected buffer is passed out by the second parameter
int **p. Function foo1 and foo2 call bufSelect to
get a buffer.

1 void bufSelect(int len, int **p,
2 int *fastbuf) {
3 if (len <= 10) *p = fastbuf;
4 else *p = (int *)malloc(len);
5 }
6 void foo1() {
7 int len = 16;
8 int *p, fastbuf[10];
9 bufSelect(len, &p, fastbuf);
10 ... //use p
11 }
12 void foo2() {
13 int len = 8;
14 int *p, fastbuf[10];
15 bufSelect(len, &p, fastbuf);
16 ... //use p
17 }

Figure 1. A simple example with memory leak

Consider the function foo1, since the value of the
variable len is greater than 10, a heap object is allocated
to *p at the call site at line 9. A memory leak occurs at the
exit of the procedure when the heap object is not released.
Saturn [5] and FastCheck [3] miss this error because they
cannot handle the function behavior that heap objects are
escaped by parameters.

Function foo2 doesn’t have memory leak while some
tools make a mistake. The call site at line 15 just assigns
fastbuf to *p and no heap memory is allocated. As the
function bufSelect contains two program paths, one of
which allocates a heap object and the other one doesn’t,
the tools without intraprocedural path-sensitivity [2], [4], [6]
merge these two paths into an allocation path which means
the call site at line 15 is analyzed as an allocation site. Thus
false alarms will be produced by these tools. The tool [1]

without interprocedural path-sensitivity, that is merging all
of the memory behaviors in different paths at the exit of
functions, also summarizes the function bufSelect as an
allocation one and produces false alarms.

B. Leak Detection using Memory State Transition Graph

In the above example, some tools miss errors, due to
the lack of global pointer analysis and precise function
behavior model. Others report false positive because the path
conditions are discarded during intra- or inter-procedural
analysis. With a precise Memory State Transition Graph
model, our tool can identify the memory leak in Figure 1.
Besides, the false positive can be eliminated.

Firstly, we analyze the function bufSelect as an
MSTG shown in Figure 2. The operator Reg(p) rep-
resents the memory object the pointer p points to. At
the beginning, the external objects Reg(p), Reg(*p),
Reg(fastbuf) passed in by function parameters are ini-
tialized to Accessed state and their action sets are empty.
Then we compute the satisfiability of the first branch condi-
tion len<=10. If it is satisfiable, the condition will be an-
notated on the edge, the action assigning Reg(fastbuf)
to pointer *p will be recorded in the action set, and the state
of Reg(fastbuf) will turn to Escaped. At the same time
the Reg(*p) is removed as no pointer points to it. Another
branch with condition !(len<=10) allocates a new heap
object to pointer *p. The action set also records the changes.
If leaked states exist in nodes, leak bugs will be reported.

Figure 2. The Memory State Transition Graph of the function bufSelect

After finishing the analysis of the function bufSelect,
we generate the function summary for bufSelect from
the MSTG. The summary consists of the annotated path con-
ditions and the action sets at the leaf nodes. The following
shows the summary of bufSelect.

{P : len <= 10, UActs : Reg(fastbuf) → ∗p}
⋃

{P :!(len <= 10), UActs : HeapObj1 → ∗p}

where P is a set of predicates that denotes the path con-
ditions and UActs is a union set of actions in leaf nodes.
The summary is applied at the function’s call site. At line
9, the value of the variable len is greater than 10, so the

3434

function bufSelect allocates a heap object to the pointer
*p. If the heap object is not freed at the end of function
foo1, it will cause a memory leak. At line 15, no memory
leak will be reported because the second branch condition
!(len<=10) is unsatisfiable. As the MSTG (summary)
records precise memory actions and path conditions, our tool
can detect the memory leak in function foo1 and eliminate
the false alarm in function foo2.

III. ALGORITHM FRAMEWORK

Figure 3 is the framework of our algorithm. The
LeakDetect algorithm first builds a call graph from the
whole program C and then visits each function in a bottom-
up order in the call graph to assure a called function has
been analyzed. The V isit algorithm generates an MSTG
for function f and reports the detected bugs during the
generation. Finally, the summary Sumf of function f is
generated from the built MSTG. The GenMSTG algorithm
and GenSum algorithm in V isit will be described in the
following sections.

input: the whole program C

output: leak reports
LeakDetect(program C)

1: Build Call Graph CG from C

2: for all function f in bottom-up order in CG do
3: V isit(f)
4: end for

V isit(function f)

1: MSTGf = GenMSTG(f)
2: if leak bugs exist then
3: output leak reports
4: end if
5: Sumf = GenSum(MSTGf)

Figure 3. Detection Algorithm

IV. INTRAPROCEDURAL ANALYSIS

This section describes the memory abstraction, basic
definitions of MSTG and intraprocedural analysis by using
MSTG.

A. Memory Abstraction

All of the memory regions except allocated in stack
are abstracted into heap objects and external objects. Heap
objects are the memory objects that are dynamically allo-
cated by library functions such as malloc, realloc, etc. We
use the set {Heaps} to represent heap objects. External
objects are the memory objects passed in by pointers of
function parameters and global variables, represented with
the set {Externs}. Another set {Statics} describes the
variables stored in static space such as global variables, static
variables. Note that {Externs} and {Statics} are disjoint.

Suppose m ∈ {Heaps} ∪ {Externs} where m

is the memory object to be abstracted.
ToExtern (that contains ToArg and ToGlobal):
m → p where Base(p) ∈ {Externs}∪{Statics}
ToAlloc: m → p where Base(p) ∈ {Heaps}
ToReturn: m → rv ToFree: m → free

Figure 4. The notations of the actions for each memory object

For example, given a global variable int *g, g belongs to
{Statics} while Reg(g) belongs to {Externs} (Suppose
that the memory region g points to is unknown). We use the
notation Base(p) to represent the memory region where the
pointer p is stored in.

According to the above memory abstraction, we define the
following 4 actions for each memory object and the notations
are shown in Figure 4.

• ToExtern action that assigns memory objects to the
pointers whose base regions belong to {Externs}
or {Statics}. It contains ToArg action and ToGlobal
action. As shown in Figure 4, m is the memory object
to be abstracted and is assigned to a pointer p of which
Base(p) belongs to {Externs} or {Statics}.

• ToReturn action that returns a memory object. We use
rv to represent the return value in Figure 4.

• ToAlloc action that assigns memory objects to pointers
whose base regions are heap objects.

• ToFree action that frees a memory object. The symbol
free in Figure 4 is an abstract value which denotes m
is freed.

The states of heap objects and external objects will be
affected by these actions. We define the following 5 memory
states for each heap object.

• Allocated state denotes heap objects are initially allo-
cated.

• Escaped state denotes heap objects are assigned to
argument pointers or global pointers or heap objects are
returned (including ToExtern and ToReturn actions).

• Freed state denotes heap objects are freed (including
ToFree action).

• Relinquished state denotes heap objects are assigned to
some complex C expressions that we cannot handle.

• Leaked state denotes heap objects are not freed, es-
caped or relinquished at the end of the function.

We also present 4 memory states for each external object.

• Accessed state denotes external objects are initialized.
• Escaped state denotes external objects are assigned

to argument pointers or global pointers, or external
objects are returned (including ToExtern and ToReturn
actions).

• Freed state denotes external objects are freed (including
ToFree action).

3535

• Relinquished state denotes external objects are assigned
to some complex C expressions that we cannot handle.

These states will be used in the following sections. Note
that although the ToAlloc action is defined, we treat a
memory object with this action as a relinquished one. That
means data structures like list, queue, etc cannot be reasoned
about.

B. Memory State Transition Graph

1) Basic Definitions: Based on the memory abstraction
above, we define a Basic State Transition Model (BSTM)
for a single memory object. A BSTM is a tuple 〈S, P,→〉 ,
where

• S is a set of memory states. It consists of the states
of heap objects and external objects. Allocated and
Accessed are two initial states. The others can be
treated as terminal states which represent a memory
object’s state at the exit of the procedure.

• P is a set of predicates. Each predicate in P represents
a set of symbolic conditional expressions extracted
from the procedure’s path conditions using symbolic
execution.

• →⊂ S × P × S is a ternary relation of labelled transi-
tions. The definition of → is a tuple 〈cs, p, ns〉 where
cs and ns respectively denote the current state and the
next state of the transition. It can be written as cs

p
−→ ns

which represents the transition from state cs to state ns
guarded by predicate p.

We respectively define the BSTM for a single heap object
and external object in Figure 5 and Figure 6. These two
figures describe the transition relations among states.

Figure 5. Basic State Transition Model for heap objects

Since a state transition of a memory object may affect the
states of other memory objects, the BSTM is not enough
to track the behaviors of a program precisely. In order
to capture the relations among different memory objects,
we define a Memory State Transition Graph as a tuple
〈S,M,P,→〉, where

• S is a set of memory states. Each state is composed of
a Kind attribute and a set of memory actions.

Figure 6. Basic State Transition Model for external objects

• M is a set of memory objects.
• P is a set of predicates same as the definition in BSTM.
• →⊂ (M × S)× P × (M × S) is a ternary relation of

labelled transitions.

Figure 7. Memory State Transition Graph

The Memory State Transition Graph is shown in Figure 7.
Each node contains a set of memory objects and their states.
Each state has a 〈Kind, {Acts}〉 pair. Edges are annotated
with predicates. The Kind attribute is actually equal to the
state definition in BSTM. For convenience, we still call it
“state” in MSTG. The Acts describe the memory actions
that cause the memory object to transit to the state.

2) Memory State Transition Graph Generation: We use
path-sensitive symbolic execution to construct memory state
transition graphs from a program. Figure 8 describes the gen-
eration algorithm. We first generate the control flow graph
(CFG) for function f , and use the breadth-first search (BFS)
algorithm to traverse the CFG. The MSTG is generated
during the traversal.

When analyzing each block, we are concerned about
assignment statements from pointers to pointers, free state-
ments, return statements, call statements and branch state-
ments. The three former types of statements cause a states
and actions update (the return value as a predicate is added
to current path conditions). If leaked states exist during the
update, bugs will be added to the bug reporter. Summaries

3636

are applied at the call statements and the branch statements
generate two new child nodes. We don’t list the handling of
switch statements in the algorithm for clearly. The algorithm
ApplySum will be given in the next section. The generation
of MSTG is actually intraprocedural detection.

GenMSTG(function f)

1: Generate control flow graph CFG for f
2: Get root block RootB from CFG

3: Init an empty memory state transition graph MSTGf

4: Generate root node RootN for MSTGf

5: BFS(RootB,RootN)
6: return MSTGf

BFS(Block B, Node N)

1: for all stmt (statement) s in B do
2: if s is a pointer assignment stmt, return stmt or free

stmt then
3: update states and actions in N
4: else if s is call stmt, cf is the callee function then
5: ApplySum(Sumcf , N)
6: else if s is branch stmt with condition C then
7: if C is satisfiable then
8: LN=NewNode(N , C), BFS(LB, LN)
9: end if
10: if !C is satisfiable then
11: RN=NewNode(N , !C), BFS(RB, RN)
12: end if
13: else
14: do symbolic execution
15: end if
16: end for

Figure 8. The algorithm of MSTG generation

V. INTERPROCEDURAL ANALYSIS

This section describes the summary-based approach to
interprocedural leak detection. Section V-A defines the
summary representation and discusses how to generate a
summary from an MSTG. Section V-B shows summary
application at function’s call sites.

A. Summary Generation from MSTG

After MSTG has been generated, intraprocedural analysis
is finished. In order to avoid analyzing the same procedure
twice, we use the existing MSTGs to generate a summary
for each procedure.

The following definition describes the summary represen-
tation.

{P1, UActs1}
⋃
{P2, UActs2}

⋃
...
⋃
{Pn, UActsn}

where Pi denotes the predicate and UActsi denotes a union
set of the Acts in MSTG. A summary is composed of
several 〈P,UActs〉 pairs. P in a 〈P,UActs〉 pair represents

a conjunction of path conditions from the start node to a leaf
node. The UActs is extracted from the states in leaf nodes.
In leak analysis, the side-effects we are interested in are
whether the function allocates new heap objects and which
external object is assigned to external pointers. Actions in
the leaf nodes are retained according to the following rules:

1) If the state of a heap object is Freed or Relinquished,
the actions referring to this object will be discarded.

2) If the state of a heap object is Leaked, the actions
referring to this object will be discarded. It will report
a memory leak during intraprocedural analysis.

3) If the state of a heap object is Escaped, the actions
ToExtern and ToReturn will be retained.

4) If the state of an external object is Freed or Relin-
quished, the ToFree action will be retained. We treat
a Relinquished object as a Freed one.

5) If the state of an external object is Escaped, the actions
ToExtern and ToReturn will be retained.

After applying these rules, the retained actions are stored
as an UActs set. Figure 9 shows the algorithm of summary
generation.

GenSum(MSTG)

1: Generate an empty summary Sum

2: for all leaf node N in MSTG do
3: Get the conjunction of conditions P in the path from

start node to N

4: Generate memory actions UActs according to rule
1 ∼ 5

5: Store 〈P,UActs〉 to Sum

6: end for
7: return Sum

Figure 9. The algorithm of summary generation

B. Summary Application

A summary is a union of several 〈P,UActs〉 pairs. Figure
10 introduces the algorithm of summary application and the
following steps describe the details.

ApplySum(Sum, N)

1: Map actual parameters to formal parameters
2: for all 〈P,UActs〉 in Sum do
3: if P is satisfiable then
4: Apply UActs to N

5: end if
6: end for

Figure 10. The algorithm of summary application

1) Map the actual parameters to the formal parameters
by using access paths. Access paths were first used by
Landi and Ryder [7] as symbolic names for memory
locations accessed in a procedure.

3737

2) Check for the satisfiability of P . Since many symbols
in P may come from function parameters, after step
1, the satisfiability is easier to reason about and the
feasible parts in summaries are reduced.

3) Apply the actions UActs to the caller’s context. The
three components of actions we should process are
external objects, heap objects and pointers whose base
region is external or heap object. External objects
should be mapped to the actual memory object in the
caller by using access paths. Heap objects are treated
as the caller allocates new heap objects. Since external
objects and heap objects are processed, we just replace
pointers’ base region with the actual objects. Then the
actions can be easily applied to the caller. Take the
following code as an example.

void myfree(int *x) { free(x);}
void f() {

int *m = malloc(32);
myfree(m); }

The action of the function myfree recorded in
summary is ToFree(Reg(x)). When myfree is
called, we first map the Reg(x) to the heap object
the pointer m points to, and then apply ToFree action
to the heap object.

VI. LIMITATIONS

The limitations of our approach are mainly caused by
imprecise handling of loops, recursions and recursive data
structures.

• Loops: We bound the number of loop iterations. Fewer
paths are analyzed and the summaries of these paths are
absent. That means we may miss some bugs in these
paths. But when analyzing the bugs in real programs,
we found that memory leaks in loops usually occur
since the second iteration. Leak bugs found at the third
or later iterations are caused by the same statements as
the second iteration. Generally, leak bugs in loops can
be detected without a deeper iteration.

• Recursions: If two functions are strongly connected in
call graph or a function calls itself, recursions exist.
We perform a conservative analysis to the recursive
functions. That is, the variables in the callee’s side-
effects are assigned an unknown or symbolic value.

• Recursive data structures: Since a heap object with the
action ToAlloc is treated as a relinquished one, the heap
objects allocated in data structures like list, queue, etc
cannot be detected.

VII. IMPLEMENTATION AND EXPERIMENTS

We have implemented our tool called Melton in Clang
[8], a new C family front-end for the LLVM compiler. Clang
provides a powerful intraprocedural framework for static
analysis. We extend it to support interprocedural analysis
for memory leak detection. The satisfiability checking is

answered using the solver in Clang. The following sections
describe our experiments.

A. Leak Errors Found in Open Source Projects

Melton was applied to some GNU open source projects,
and it found 5 memory leak errors in wget-1.10.2
and 1 leak error in which-1.16. Figure 11 shows a
memory leak found by Melton. At line M in this figure,
read_whole_line allocates a heap object to line
which is not freed at line L.

fileinfo *ftp_parse_winnt_ls(...)
...

M: while (line=read_whole_line(fp)){
len = clean_line(line);

L: if (len < 40) continue;
... } }

Figure 11. Memory leak in file ftp-ls.c of wget-1.10.2.

Two of these bugs in wget-1.10.2 which also exist
in wget-1.12 are confirmed by the developers of the
programs. We analyzed wget-1.10.2 and which-1.16
but not the latest release sources so as to compare our work
with [1] which only found one bug in wget and one bug
in which.

B. Comparison with Other Tools

To compare with other tools, we have applied Melton to
some programs in SPEC2000 that were also analyzed by
LC [2], FastCheck [3], SPARROW [4] and WJ2009 [9].
Table I shows the experimental results. The first column
shows the names of the programs and the second and third
columns describe the number of lines of each program and
the analysis time. The following two columns show the real
bugs and false positives our analysis tool reported. The last
column represents the number of types of false positives.
False positives caused by the same code pattern in one
program are summarized into one type.

Prog. Size(kloc) Time Bugs FP Types of FP
art 1.2 1.7s 0 0 0

bzip2 4.6 7.0s 0 0 0
equake 1.5 0.2s 0 0 0
ammp 13.2 26.3s 14 0 0
gzip 7.7 13.1s 0 0 0
mcf 1.9 10.7s 0 0 0
vortex 52.7 33m29.7s 5 7 2
crafty 18.9 1m31.8s 0 0 0
mesa 49.7 7m38.1s 12 15 3
parser 10.9 2m4.3s 0 0 0

Table I
EXPERIMENTAL RESULTS ON SOME PROGRAMS OF SPEC2000.

Fourteen real bugs in ammp were reported while LC,
FastCheck and SPARROW reported 20 real bugs. It

3838

seems that Melton detects fewer bugs. But after analyzing
FastCheck’s bug reports, we found that Melton reported
one bug with two allocation sites (a = malloc(32)
and b = malloc(32)) in the following code whereas
FastCheck reported two bugs. The actual bugs Melton found
in ammp are the same as other tools.

a = malloc(32), b = malloc(32);
c = malloc(32); if (c == NULL) return;

Melton detected 5 bugs in vortex and 12 in mesa
that are more than other tools. It benefits from the precise
function summaries. Although it generated 7 false positives
in vortex and 15 false positives in mesa, the types of
them are 2 and 3 which can be checked easily. Some of
them occur due to the weakness of our memory abstraction.
That is, Melton cannot capture the side-effect assigning a
constant value or symbolic value (not memory object) to
pointer arguments. For instance,

int *mymalloc(int *state) {
if (*state == 0) {

*state = 1; return malloc(64); }
return NULL; }

void foo() {
int st = 0; int *m = mymalloc(&st);
if (st == 1) free(m); }

If the function mymalloc returns a heap object, the value
of st should be 1. Melton reports a false positive because
it cannot capture the assignment to *state. It causes most
of the false positives in vortex. The poor handling at
function pointers also leads Melton to report most of the
false positives in mesa.

Melton misses some bugs in art, bzip2, equake and
gzip that other tools can detect. Most of the false negatives
are caused by the limited iteration number in loop. We don’t
check the memory leak that a heap object pointed to by
global variables is not freed at the exit of main procedure
while [9] does and it found the most bugs in the former
three programs.

VIII. RELATED WORK

Many tools have been developed for detecting memory
leak. Dynamic tools like Purify [10] and Valgrind [11]
are commonly used. The programs are instrumented and
dynamically executed to trigger the existing memory leak
errors. The ability of memory leak detection of dynamic
tools depends on the quality of test inputs.

We focus on static detection tools in this paper. The
existing memory leak detection tools [1]–[6] using static
techniques can be classified into two categories: flow-
sensitive and path-sensitive. Generally, flow-sensitive tools
have a lower cost of time, but the false positive rate is high.
The advantage of path-sensitive tools is the accuracy of bug
finding. Most of the existing tools support interprocedural
analysis, and are context-sensitive.

To compare with other tools more clearly, we define
eleven memory actions classified into four categories that
may be captured in analyzing function behaviors in Table
II. The first and second column respectively show heap
objects’ and external objects’ escaped actions through argu-
ments, global variables and return value. The following two
columns are used to capture the alias in arguments and global
variables such as the functions like strcpy , memcpy, etc
that return the argument’s alias.

Escaped with
heap objects

Freed with
external objects

Args’ Interpro-
cedural alias

Globals’ Inter
procedural alias

AllocToArg ArgToFree ArgToArg GlobalToArg
AllocToGlobal GlobalToFree ArgToGlobal GlobalToGlobal
AllocToReturn ArgToReturn GlobalToReturn

Table II
11 KINDS OF ACTIONS AND THEIR CATEGORIES

Orlovich and Rugina [2] presented a static memory leak
detector called LC that reasons about the absence of bugs
by disproving their presence. The algorithm performs a
backward dataflow analysis. Clouseau [6] is a flow-sensitive
and context-sensitive memory leak detector. It is based on
a practical ownership model for managing memory. These
two tools generate high false positive rate and are hard to
compare with our tool about memory actions.

SPARROW [4] models each procedure into a parame-
terized summary that is used in analyzing its call sites.
Although it makes the summary relevant with return value,
path-insensitive analysis causes it to miss some bugs. Be-
sides, it misses some leak bugs that come from interproce-
dural overwriting of allocated addresses stored in the same
global variable because of the weakness in handling memory
actions of global variables.

Xie and Aiken [12] developed a context- and path-
sensitive static analysis framework, Saturn. The memory
leak detector [5] based on Saturn exploits path-sensitivity
from modeling the input program as Boolean formulas.
The detector is context-sensitive by using summary-based
analysis. A summary of a function includes a Boolean value
that describes whether the function returns newly allocated
memory and a set of escaped locations(escapees). But it
cannot capture the memory actions such as AllocToArg,
ArgToArg, etc. That means a heap object escaped by func-
tion parameters will be ignored during interprocedural anal-
ysis. Melton implements a more precise function summary
model than Saturn and is able to detect more kinds of bugs.

FastCheck [3] detects memory leak using a sparse repre-
sentation of the program in the form of a value-flow graph.
The analysis reasons about program behavior on all paths
by computing guards for the relevant value-flow edges. But
its analysis is not precise enough, for example the actions
AllocToArg, AllocArg are not captured like Saturn. The
imprecise and unsound test conditions in guards cause it

3939

to miss some errors.
Xu and Zhang [1] presented a path- and context- sensitive

method to detect memory leaks in C programs. Escape
analysis is used to summarize the function behavior into 8
categories. The summary representation is concise, but not
precise enough. The memory actions about interprocedural
alias like ArgToArg, ArgToReturn, etc are not captured in
summaries. Thus it detects fewer bugs than ours. Besides, the
summaries do not contain the path conditions for reducing
the false positive rate.

Table III shows the difference of the tools in path-
sensitivity. The interprocedural path-sensitivity means the
path conditions are retained in function summaries and are
used in function’s call sites.

Tools
Intraprocedural
path-sensitivity

Interprocedural
path-sensitivity

LC [2] No No
Clouseau [6] No No
FastCheck [3] Yes No
Saturn [5] Yes Yes

SPARROW [4] No No
XZ08 [1] Yes No
Melton Yes Yes

Table III
THE DIFFERENCE ABOUT PATH-SENSITIVITY

Table IV describes the memory actions the tools record.
It shows that Melton records more memory actions than
others. FastCheck captures fewest memory actions, so it
detects fewer leaks than Saturn, SPARROW and Melton. But
we cannot handle the memory action ToAlloc that causes
Melton to miss some leaks that other tools can detect.

Saturn SPARROW FastCheck XZ08 Melton
AllocToArg No Yes No Yes Yes
AllocToGlobal No No No Yes Yes
AllocToReturn Yes Yes Yes Yes Yes
ArgToFree Yes Yes Yes Yes Yes
GlobalToFree Yes No No Yes Yes
ArgToArg No Yes No No Yes
ArgToGlobal Yes Yes No No Yes
ArgToReturn No Yes Yes Yes Yes
GlobalToArg Yes Yes No No Yes
GlobalToGlobal No No No No Yes
GlobalToReturn Yes Yes No No Yes

Table IV
MEMORY ACTIONS CAPTURED BY MEMORY LEAK DETECTION TOOLS.

IX. CONCLUSION AND FUTURE WORKS

We have presented a novel analysis model called Memory
State Transition Graph (MSTG) for detecting memory leak.
The model captures procedure behaviors more precisely and
reasons about path conditions for reducing false positive rate
and path explosion. To support interprocedural analysis, it
generates precise summaries which are applied at function’s

call sites. Several memory leak bugs have been found in real
programs and more leak bugs have been detected in some
programs of SPEC2000 benchmarks. In some cases Melton
produces many false positives, but most of them come from
the same code patterns which are easy to check.

Currently, Melton misses some bugs caused by poor
handling in loops, recursions and recursive data structures. In
the future work, we plan to do optimization in loops such as
the loops with constant iteration number and to capture the
memory actions in recursive data structures. Besides, we will
improve our memory abstraction to describe the function’s
side-effects more precisely to reduce the false positive rate.

ACKNOWLEDGEMENTS

This work is supported in part by the National Natu-
ral Science Foundation of China (NSFC) under grant No.
61070039 and 61003026. The authors would like to thank
an anonymous reviewer for detailed comments.

REFERENCES

[1] Z. Xu and J. Zhang, “Path and context sensitive inter-
procedural memory leak detection,” in Proc. of QSIC, 2008,
pp. 412–420.

[2] M. Orlovich and R. Rugina, “Memory leak analysis by
contradiction,” in Proc. of SAS, 2006, pp. 405–424.

[3] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory
leak detection using guarded value-flow analysis,” in Proc. of
PLDI, 2007, pp. 480–491.

[4] Y. Jung and K. Yi, “Practical memory leak detector based
on parameterized procedural summaries,” in Proc. of ISMM.
ACM, 2008, pp. 131–140.

[5] Y. Xie and A. Aiken, “Context- and path-sensitive memory
leak detection,” in Proc. of ECSE/FSE, 2005, pp. 115–125.

[6] D. Heine and M. Lam, “A practical flow-sensitive and context-
sensitive C and C++ memory leak detector,” in Proc. of PLDI,
2003, pp. 168–181.

[7] W. Landi and B. G. Ryder, “A safe approximate algorithm for
interprocedural aliasing,” in Proc. of PLDI, 1992, pp. 235–
248.

[8] “Clang: a C language family frontend for LLVM.”
http://clang.llvm.org.

[9] J. Wang, X. Ma, W. Dong, H. Xu, and W. Liu, “Demand-
driven memory leak detection based on flow and context-
sensitive pointer analysis,” JCST, pp. 347–356, 2009.

[10] R. Hastings and B. Joyce, “Purify: Fast detection of mem-
ory leaks and access errors,” in Proceedings of the Winter
USENIX Conference, 1992, pp. 125–138.

[11] “Valgrind,” http://www.valgrind.org/.

[12] Y. Xie and A. Aiken, “Scalable error detection using Boolean
satisfiability,” in Proc. of POPL, 2005, pp. 351–363.

4040

