
Path and Context Sensitive Inter-procedural

Memory Leak Detection∗

Zhongxing Xu

State Key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences

Graduate University

Chinese Academy of Sciences

xzx@ios.ac.cn

Jian Zhang

State Key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences

zj@ios.ac.cn

Abstract

This paper presents a practical path and context sensi-

tive inter-procedural analysis method for detecting mem-

ory leaks in C programs. A novel memory object model

and function summary system are used. Preliminary exper-

iments show that the method is effective. Several memory

leaks have been found in real programs including which

and wget.

Keywords: memory leak, path feasibility, bug finding

1 Introduction

Languages like C require the programmer to manually

allocate and free memory in programs. Memory leak is a

common problem in such programs. Memory leak in long

running programs can cause system performance degrada-

tion, and even system crash. Many memory leak problems

are subtle and hard to find manually. It has few symptoms

other than the slow and steady increase in memory con-

sumption.

We developed an automated method to find memory

leaks statically. Our method has the following character-

istics.

• We use a novel memory object model and escape anal-

ysis method. Our modeling of memory objects accom-

modates both escape analysis and symbolic execution

of the program.

• The analysis is path sensitive. We use a constraint

solver (CVC3 [3]) to reason about the feasibility of the

∗This work is supported in part by the National Natural Science Foun-

dation of China (NSFC) under grant number 60633010 and 60673044.

program path. This can eliminate a large number of

false alarms. In addition, path based analysis makes

the path that causes the defect immediately available.

• Path sensitive analysis also makes a separate conser-

vative pointer analysis unnecessary, where multiple

aliases are maintained. The pointer information is

tracked along a single path at a time. Compared with

traditional data flow analysis, path based analysis does

not merge data flow facts at join points of the CFG.

This greatly simplifies data structure and implementa-

tion.

• The analysis is context sensitive. Heap objects al-

located at different call sites are tracked separately.

Function arguments at different call sites are also rec-

ognized as different.

• The analysis is inter-procedural. The function sum-

mary system is precise and scalable to large programs.

Section 2 gives a simple example to illustrate the power

of our analysis. Section 3 gives an overview of the method,

and describes the memory objects modeling method. Sec-

tion 4 describes the data flow lattice used during analysis.

Section 5 and 6 give details of the analysis method. Exper-

imental results are shown in Section 7. We discuss related

works in Section 8, and conclude in Section 9.

2 An Example

This section presents an example to show the effective-

ness of our method. The code in Figure 1 is a simplified

version of real world code.

The analysis begins with compiling the code, building

the call graph. Then it does its work in function modeling

phase and memory leak checking phase.

1

int malloc_arg1(int **p) {

int *t = malloc(8);

if (!t) return 0;

else {

*p = t;

return 1;

}

}

int malloc_arg2(int **p) {

int *t = malloc(8);

if (!t) assert(0);

*p = t;

if (...)

return 0;

else

return 1;

}

void foo(void) {

int r, *p;

r = malloc_arg1(&p);

if (!r)

L1: return;

else {

// do something to p

free(p);

}

int q = malloc_arg2(&p);

if (!q)

L2: return;

else {

// do something to p

free(p);

}

}

Figure 1. A simplified example from real

code. In malloc arg1, the return value 1/0 in-

dicates the success/failure of memory alloca-
tion. In malloc arg2, the return value has no

relation to the memory allocation. There is a
memory leak when the function foo returns at

line L2.

Function Behavior Return Value Feasible Paths

malloc arg1 MallocArg 1 1

malloc arg2 MallocArg Unknown 2

foo None void 2

Table 1. The function summary we get after

function modeling phase.

During function modeling phase, the functions are vis-

ited bottom-up in the call graph, i.e. leaf nodes of the call

graph are visited first. The benefit of bottom-up visiting is

that the callee’s summary information is always available

when needed. For each function we limit the loop time to at

most once, and generate all feasible paths of it. The detailed

path generation and feasibility decision method is given in

Section 5. Function modeler visits each feasible path to ex-

tract function behavior information.

After the function modeling phase, the function

summaries we get are given in Table 1. Function

malloc_arg1() and malloc_arg2() both allocate a

memory block and save its address into a variable pointed to

by its argument. But malloc_arg1() has an associated

return value 1 with its memory allocation behavior. In our

analysis, we always assume malloc() is successful. So

there is only 1 feasible path in function malloc_arg1().

Having this precise summary information, the mem-

ory leak checker can correctly detect the memory leak

at line L2. Since we have no information about the re-

turn value of malloc_arg2(), the path returning at line

L2 is feasible, which makes the heap object malloced in

malloc_arg2() leaked. On the other hand we get

r = 1 after calling malloc_arg1(), which makes the

path returning at line L1 infeasible.

3 Overview

The framework of our analysis is shown in Figure 2. The

analysis is done in the following steps:

1. The front end compiles and links the program to be

checked into a file which contains intermediate repre-

sentation of all functions of the program. The whole

program call graph is built subsequently.

2. Function modeling phase. Visit the functions in the

bottom-up order of the call graph. For each function,

(a) Generate paths for the function.

(b) Check the feasibility of the paths and save feasi-

ble paths.

(c) Analyze each feasible path to get function sum-

mary information.

3. Memory leak checking phase. Visit the functions in

any order. For each function, for each of its saved fea-

sible paths, check for possible memory leaks.

The main difficulty of doing inter-procedural analysis is

to get a precise description of what a function does at the

call site. Our method does the analysis in two phases: func-

tion modeling phase and bug detection phase.

In function modeling phase, each function is visited in

bottom-up order in the call graph. For each function, we

generate all paths from its entry to exit. We traverse each

loop at most once to make the number of generated paths

limited. Each path is subject to a path feasibility checker

before being passed to the function modeler. A path is fea-

sible if there exists a set of input values that can cause the

program to execute the path. The feasibility checker is not

sound. But it is fast. It does a best-effort decision of path

feasibility. Experiments show that it can prune most of the

infeasible paths so that these paths will not be passed to later

more expensive analysis.

The product of the function modeling phase is a sum-

mary of each function. The function summary contains

the following information: the feasible paths of the func-

tion, the behavior related to heapmemory objects, the return

value, etc.

In addition to user functions in the program, we also

model library functions. A simple function modeling lan-

guage is used to describe standard C library functions. For

example, function malloc() can be modeled by

malloc { return heapobj },

and function printf is modeled as ignored:

printf { ignored }.

Currently there are about 300 functions in the function

model library and new functions are added as needed. By

limiting the path sensitivity intra-procedurally, we reduce

the analysis cost and maintain the high precision.

In the memory leak checking phase, the feasible paths of

a function is analyzed for memory leak detection. The anal-

ysis focuses on the states of the heap memory objects, not

on the pointers that point to them. We model the memory

objects in the program explicitly.

3.1 Modeling of Memory Objects

All the memory objects are allocated explicitly in LLVM

(our implementation platform, see Section 7). Global ob-

jects are defined at the module scope. Stack objects are al-

located with alloca at the front of a function definition.

Heap objects are allocated with malloc in the program.

We describe each memory object with the following in-

formation.

• Kind: A memory object can be Global, Stack, Argu-

ment, or Heap. In LLVM, the function arguments are

Figure 2. Analysis system overview

passed in virtual register and placed on stack explicitly

with the store instruction. We identify the object

pointed to by a pointer function argument as of kind

Argument.

• State: We associate each heap object with a state: Mal-

loced, Freed, Returned, EscapedByArg, Escaped-

ByGlobal, EscapedByUnknown. Our current analy-

sis algorithm is not field sensitive, i.e. we do not track

the pointer fields in a struct or array. We mark the heap

object whose address is saved into a struct or array as

EscapedByUnknown. Due to this, our method can

not catch memory leaks caused by recursive data struc-

tures.

• Index: We abstract the address of a memory object into

an integer index. The analysis does not support cross-

object address calculation.

• EscapedBy: This field records how the heap object is

escaped from the function where it is allocated.

• PointedBy: This field records the object pointing to this

object. It is used in the leak analysis module.

• SValue: This is the data flow lattice value of the object

used during analysis. The lattice is described in detail

in Section 4.

3.2 Escape Model

Given a set of program paths, the memory leak checker

tracks the states of heap objects through simulating pointer

operations in the path. When we finish analyzing the path,

the states of heap objects are examined. If a heap object is

neither freed nor escaped, it is recognized as leaked.

Figure 3 shows the escape model: returned, escaped by

global variable, escaped by argument, and escaped by un-

known. The last escape model is subtle. Usually this occurs

when the programmer is building recursive data structures.

Whenever a heap pointer is stored into a struct field, we

mark the heap object as escaped by unknown.

Separation of function modeling and memory leak de-

tection makes it easy to extend the system to check other

void *foo()

{

void *p = malloc(8);

return p;

}

The heap object is returned.

void *p;

void foo()

{

p = malloc(8);

}

The heap object is escaped by global variable p.

void foo(void **p)

{

*p = malloc(10);

}

The heap object is escaped by argument p.

struct list *head;

void foo(void) {

struct list *n =

malloc(sizeof(struct list));

head->next = n;

}

The heap object n is escaped by unknown.

Figure 3. The escape model used by the anal-
ysis.

kinds of program bugs. We can extend the modeler to ex-

tract more function properties, and plug other checkers into

the system.

4 Dataflow Value Lattice

We designed a lattice for our analysis, as shown in Fig-

ure 4. There are 3 types of values in the lattice: Boolean,

integer, and pointer.

• Boolean:

– TRUE.

– FALSE.

– SymbolicBool. A symbolic Boolean value is a

predicate at branches, such as x > 3.

• Integer:

– Concrete Integer. For example, 3, 5, 8, ...

– Symbolic Integer. A symbolic integer is an ex-

pression of integer type, which may be con-

structed from statements like x += y, where x

or y has no concrete integer value.

• Pointer:

– Null.

– NonNull. A NonNull pointer is definitely not

NULL, but we know nothing more about it.

– ConcretePointer. A concrete pointer takes the in-

dex of the memory object it points to as its value.

– SymbolicPointer. A symbolic pointer

is an unknown pointer value, e.g.,

p = strchr(s, ’.’); p gets a sym-

bolic pointer value pointing at somewhere of

string s.

This lattice can retain much of the information of the

program. The uncertain part (i.e. symbolic values) leaves

space for the constraint solver. We send these expressions to

the constraint solver and query it for feasibility of the path.

5 Function Modeling

The purpose of function modeling is to get two kinds of

information of a function: the set of feasible paths, which

are to be analyzed by later memory leak detection phase,

and the function’s behavior on heap memory objects.

Figure 4. The lattice used in data flow analy-

sis.

5.1 Function Summary

What a function might do about a heap memory object?

We summarize the function behavior into the following cat-

egories:

• None: The function does nothing relevant to heap ob-

jects.

• ReturnHeapObj: The function allocates a heap object,

and returns its address.

• MallocGlobal: The function allocates a heap object,

and saves its address into a global variable.

• MallocArg: The function allocates a heap object, and

saves its address into a variable pointed to by an argu-

ment of the function.

• FreeGlobal: The function frees a heap object pointed

to by a global variable.

• FreeArg: The function frees a heap object pointed to

by an argument of the function.

After initial experiments, we have observed some code

patterns occur frequently. It is necessary to extend the orig-

inal function summary by adding condition to the behavior.

int foo(int **p) {

int *t = malloc(8);

if (t) {

*p = t; return 1;

} else {

return 0;

}

}

Figure 5. return value is related to malloc

In Figure 5, the function’s return value indicates the re-

sult of memory allocation. foo() returns 1 when memory

int *g;

void bar() {

if (!g)

g = malloc(8);

else

// do not allocate

}

Figure 6. the precondition of malloc is g == 0

allocation succeeds, and returns 0 when memory allocation

fails. In Figure 6, global variableg gets malloced only when

it has not been malloced.

A common property of the code fragments in Figure 5

and Figure 6 is that they associate a conditionwith the mem-

ory allocating behavior. Without modeling such property,

we get a lot of false alarms. But not all of the return values

or path conditions are associated with a memory allocating

behavior. In the contrived example of Figure 7, the return

value has nothing to do with the malloc() at line 3.

int foo(int **p, int x) {

*p = malloc(8);

if (x > 3)

return 1;

else

return 0;

}

Figure 7. return value is not relevant tomalloc

To establish correct association between function behav-

ior and return value, we collect all the return values of paths

which have memory allocating behavior and do a meet op-

eration of the lattice in Section 4 on them. For a malloced

global variable, we only record the path condition involving

that variable.

The refined function summary information is:

• None: The function does nothing relevant to heap ob-

jects.

• ReturnHeapObj: The function allocates a heap object,

and returns its address.

• MallocGlobal: The function allocates a heap object,

and saves its address into a global variable.

• MallocGlobalCond: The same as above, but has an

associated condition.

• MallocArg: The function allocates a heap object, and

saves its address into a variable pointed to by an argu-

ment of the function.

Model -> Name { Behavior }

Name -> [A-Za-z0-9_]*
Behavior -> ignored

| return Value

Value -> heapobj

| int

| pointer

| @1

Figure 8. The language for modeling library

functions.

Model Semantic Meaning

random { return int } return a symbolic integer.

strchr { return pointer } return a symbolic pointer.

strcat { return @1 } return the first argument.

Table 2. Some examples of library function

modeling.

• MallocArgRetVal: The same as above, but has an asso-

ciated return value.

• FreeGlobal: The function frees a heap object pointed

to by a global variable.

• FreeArg: The function frees a heap object pointed to

by an argument of the function.

5.2 Library Function Modeling

The C programming language has a comprehensive stan-

dard library. Ignoring these library functions may result in

imprecise analysis of programs. We designed a function

modeling language to alleviate the labor of modeling these

functions manually. Currently the language is memory leak

detection biased. But it can be extended easily.

The syntax of the modeling language is given in Figure 8.

Table 2 shows some examples of library function modeling.

Currently there are about 300 functions in the function

model base. New functions are added and the modeling

language are extended as needed.

5.3 Path Generation

The function modeling is path sensitive. A path gener-

ator is run on the visited function. The path generator tra-

verses the CFG of the function in the depth-first order, and

generates all paths from the entry to the exit of the function.

Loops are identified by an earlier loop analysis pass, and are

traversed at most once. This guarantees the termination of

the traversal. Experiments show that the zero/once execu-

tion of the loops is effective for memory leak detection.

Doing the analysis on a path basis has several advan-

tages.

• Analyzing a single path at a time simplifies pointer

alias analysis greatly. It is no longer necessary to do

a conservative alias analysis. A pointer can point to at

most one position at any time during the execution of

the path. Usually this position can be known precisely.

• It helps programmer to locate the bug. Once a memory

leak is identified, the path that causes it is available im-

mediately to check manually. This advantage greatly

helps us during the implementation of the method.

• It helps reduce the false alarms. With the help of a high

quality path feasibility checker, we can eliminate most

of the false alarms.

The disadvantage of path based analysis is relative higher

cost, since the number of paths grows exponentially with

the branches in the CFG. But as we limit the loop traversal

to at most once, the number of paths generated for most

functions is less than 1000.

A generated path is a list of basic blocks. In later analy-

sis phases we update the information associated with virtual

registers and memory objects during the checking. In addi-

tion, we record the indices of heap objects related to a path.

5.4 Path Pruner

We use symbolic execution on the lattice of Figure 4 to

decide the feasibility of a path. At the beginning of anal-

ysis of a path, the global variables and function arguments

are set to symbolic values. The symbolic execution is con-

ducted faithfully according to the operations of the program

path.

Some operations that we currently do not model are ig-

nored, and their values are set to the bottom in the lattice.

Such operations include floating-point operations, division,

bitwise operations, etc. Function calls are modeled accord-

ing to function summary information obtained during func-

tion modeling phase. Since we traverse the call graph in

the bottom-up order, usually we can have the function sum-

mary when a function is called. Note that we do not apply

function summary fully in path pruner, since the function

summary is memory leak checking biased, and may not be

suitable for general purpose path pruning. When recursive

function call is encountered, and the summary of the callee

is not available at the time, we do not apply the function

summary.

When a path finishes execution, the path condition at

each branch is collected and solved by the constraint solver.

Theoretically a constraint solver (or theorem prover) is too

expensive for program analysis. But as we observed in the

experiments, almost all of the constraints are very easy to

solve. The constraint solver does not turn out to be too

heavy as traditionally viewed.

The feasible paths are saved in the function summary,

and are passed to function modeler and memory leak

checker.

5.5 Function Modeler

Function modeler extracts the heap behavior of the func-

tion as described in Section 5.1. The modeler analyzes each

feasible path obtained in Section 5.4. The modeler focuses

on pointer values and heap object states.

When a function call is encountered, the modeler refer-

ences the function summary to see if it has behavior related

to heap objects, whether it is malloc or free, and applies the

behavior accordingly.

When a heap pointer is saved to some variable, the

modeler changes the state of the heap object accord-

ing to the storage class of the destination. If it is a

global variable, the modeler sets the state of the heap ob-

ject to EscapedByGlobal and records the global vari-

able. If it is an argument, the modeler sets the state to

EscapedByArg. If it is a local variable, do nothing. If

it is a struct field, the modeler sets the state of the heap ob-

ject to EscapedByUnknown, because most of the time

such behavior implies the programmer is building recursive

data structure. The old heap object pointed to by the desti-

nation variable, if any, should be set to Malloced state. If

a heap pointer is returned, the state of the heap object is set

to Returned.

When it finishes analyzing the path, the modeler

checks the state of each heap object. If there is an

EscapedByArgument object, the modeler records the

index of the argument and the related return value in the

function summary. If there is an EscapedByGlobal ob-

ject, the modeler records the associated path condition in-

volving the global pointer. If there is a Returned object,

the modeler records the function as ReturnHeapObj.

6 Memory Leak Checker

Once we have a model of all the functions in the pro-

gram, we do the actual memory leak analysis. Memory

leaks caused by recursive data structure manipulation can

not be detected, because that needs global pointer analysis

which is extremely difficult for C.

We still visit the functions in the bottom up order in the

call graph, although this is not required. For each function,

we analyze all feasible paths saved in the function summary.

The path pruner focuses on path condition extraction,

while the function modeler focuses on heap object state up-

dates. The memory leak checker collects both information.

Why is this necessary? Because the integration of memory

object information and path predicates information may re-

sult in new infeasible paths which can not be detected by

the path pruner.

Consider again the example in Figure 1. The path in

function foo() that returns at line L1 is not recognized as

infeasible by the path pruner. Since the path pruner does not

simulate function behavior fully according to the function

summary. The path is really feasible when memory alloca-

tion fails. In memory leak checker it is viewed as infeasible

because we assume every memory allocation is successful.

For checking other types of bugs, such assumption may not

be appropriate.

So in memory leak checker we collect as much informa-

tion as we can, and simulate function behavior fully accord-

ing to the function summary.

When the checker finishes analyzing a feasible path, the

state of each heap object is examined. For every heap object

whose state is Malloced, we query the constraint solver

for the feasibility of the path. If the path is feasible, the

checker emits a warning.

7 Implementation and Experiments

We have implemented the analysis in the LLVM com-

piler infrastructure [6]. LLVM is a low-level object code

representation that uses simple RISC-like instructions, but

provides rich, language-independent, type information and

data flow (SSA) information about operands. Memory ob-

jects are allocated explicitly in LLVM. All computation oc-

curs in virtual registers. Virtual registers and memory lo-

cations are distinct. It is not possible to take the address

of a virtual register, and virtual register can only represent

scalar variables. Values are communicated between virtual

registers and memory objects with explicit load and store

instructions.

We used numerous LLVM facilities including a C front

end, call graph constructor, loop analysis, and others.

We use the existing building mechanism of the program

(usually GNU autotools) to compile the whole program into

a big bitcode file of LLVM. This bitcode file contains all the

code of the program. Full inter-procedural analysis can be

done on this file.

We have run our system on code used daily by peo-

ple, including make, wget, bzip2, gzip, adns, time,

proftpd, which, etc. The sizes of these packages are

between 2,000 to 50,000 LOC. All experiments are carried

out on a PC with a Core2 Duo T7600 (2.33GHz) CPU, 2GB

memory. The checking time is under 5 minutes for each

package.

Two of the memory leaks found by the system are shown

in Figure 9 and Figure 10. We reported to the developers of

the programs, and they confirmed the bugs. Both of the bugs

can only be found with the presence of inter-procedural data

flow information. The control flow of the code is complex,

and is hard to analyze manually.

// in file which.c:

int path_search(...) {

if (...) {

...

do {

M: result = find_command_in_path(...);

if (result) {

...

if (...) {

} else if (in_home) {

if (skip_tilde) {

next = 1;

L: continue;

}

...

}

...

}

free(result);

} while (...)

}

}

Figure 9. Memory leak in which 2.16: re-

sult gets allocated a heap object at line M. If

the execution of program reaches line L, the
statement free(result) will be skipped, and re-

sult will get allocated another heap object.

The old one is leaked.

8 Related Works

Memory leak detection using dynamic techniques has

been a part of the programmer’s toolkit for more than a

decade. Purify [4] and Valgrind [8] are two representative

dynamic tools. Dynamic memory leak detection is limited

by the quality of the test suite; unless a test case triggers

the memory leak it cannot be found. We restrict the dis-

cussion to static techniques for detecting memory leaks. A

famous static analyzer is Prefix [1] which can analyze large

programs efficiently. However, it does not have precise path

feasibility checking.

Saturn [9] is the most similar work to ours. It reduces

the problem of memory leak detection to a Boolean satis-

fiability problem, and then uses a SAT solver to identify

potential errors. Their escape analysis is similar to ours:

// in file ftp-basic.c:

uerr_t ftp_pasv(...) {

...

M: err = ftp_response (csock, &respline);

...

s = respline;

for (s += 4; *s && !ISDIGIT (*s); s++);

if (!*s)

L: return FTPINVPASV;

...

}

Figure 10. Memory leak in wget 1.10.2:

ftp response() allocates a heap object and
saves the address to the position pointed to

by its second argument. So respline is allo-
cated a heap object at line M, but is not freed

when function returns at line L.

any allocated location in a procedure that is not deallocated

nor escaped is leaked. But we use a different function sum-

mary system and different path feasibility decision method.

Specifically, our function summary captures escapes caused

by pointers passed out by function parameters. Their func-

tion summary captures escapes caused by pointers passed in

by function parameters. So Saturn can not detect the mem-

ory leak in Figure 1 and Figure 10. In addition, we use a

different approach to do program analysis. Saturn reduces

all program operations into Boolean formulas. We analyze

the program with traditional data flow analysis and sym-

bolic execution, and use an SMT solver. Our approach is

more precise and efficient, because not all of the C program

semantics can be naturally translated into Boolean satisfia-

bility problems.

Clouseau uses an ownership model to track an object’s

owning reference [5]. In this model, every object is pointed

to by one and only one owning pointer. They assume that

the pointer member fields in an object either always or never

own their pointees at public method boundaries, and the

destructor method of an object contains code to delete all

and only objects pointed to by owning member fields. This

idealized ownership model is best suited for well designed

object-oriented C++ programs. It can easily be violated by

versatile C programs.

LC [7] runs a backward heap analysis to disprove the

presence of memory leak. To determine whether a memory

leak can occur at a programpoint, the analysis uses a reverse

inter-procedural flow analysis to disprove its negation.

Fastcheck [2] detects memory leak via guarded value

flows. It tracks the flow of values from allocation points to

deallocation points using a sparse representation of the pro-

gram consisting of a value flow graph that captures def-use

relations and value flows via program assignments.

Neither LC nor Fastcheck models functions as sophisti-

cated as our analysis does. They consider path feasibility to

a limited extent, i.e., using a SAT solver, which is insuffi-

cient to prune false alarms.

We applied LC to the example in Figure 1, and LC re-

ported two warnings for it. It did not eliminate the false

alarm at line L1. In constrast, our tool reports only one

warning at line L2. (We failed to install and run fastcheck

due to lack of instructions on its website. So we were not

able to compare it with our tool.)

9 Conclusion

We have presented an automated static memory leak

analysis method. The method uses a novel program mem-

ory model and inter-procedural function summary to do

path and context sensitive analysis. The analysis reasons

about program behavior on almost all paths and solves the

path condition with a constraint solver. The omited paths

are mostly ones with loops in them. Several memory leaks

have been found in real programs. Besides memory leak,

the method can be easily extended to check for double free

and null pointer dereferences.

References

[1] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static an-

alyzer for finding dynamic programming errors. Soft-

ware Practice and Experience, 30:775–802, 2000.

[2] S. Cherem, L. Princehouse, and R. Rugina. Practical

memory leak detection using guarded value-flow anal-

ysis. In Proceedings of the 2007 ACM SIGPLAN con-

ference on Programming language design and imple-

mentation, 2007.

[3] CVC3. http://www.cs.nyu.edu/cvc3.

[4] R. Hastings and B. Joyce. Purify: Fast detection of

memory leaks and access errors. In Proceedings of the

Winter USENIX Conference, 1992.

[5] D. L. Heine and M. S. Lam. A practical flow-sensitive

and context-sensitive C and C++ memory leak detector.

In Proceedings of the 2003 ACM SIGPLAN conference

on Programming language design and implementation,

2003.

[6] The LLVM compiler infrastructure. http://llvm.org/.

[7] M. Orlovich and R. Rugina. Memory leak analysis

by contradiction. In Proceedings of the International

Static Analysis Symposium (SAS ’06), 2006.

[8] Valgrind. http://www.valgrind.org.

[9] Y. Xie and A. Aiken. Context- and path-sensitive mem-

ory leak detection. In Proceedings of ECSE/FSE 2005,

2005.

