
BinSim: Trace-based Semantic Binary Diffing via System Call Sliced
Segment Equivalence Checking

Jiang Ming
The University of Texas at Arlington

jiang.ming@uta.edu

Dongpeng Xu, Yufei Jiang, and Dinghao Wu
The Pennsylvania State University
{dux103, yzj107, dwu}@ist.psu.edu

Abstract

Detecting differences between two binary executables
(binary diffing), first derived from patch analysis, have
been widely employed in various software security anal-
ysis tasks, such as software plagiarism detection and
malware lineage inference. Especially when analyzing
malware variants, pervasive code obfuscation techniques
have driven recent work towards determining semantic
similarity in spite of ostensible difference in syntax. Ex-
isting ways rely on either comparing runtime behaviors
or modeling code snippet semantics with symbolic exe-
cution. However, neither approach delivers the expected
precision. In this paper, we propose system call sliced
segment equivalence checking, a hybrid method to iden-
tify fine-grained semantic similarities or differences be-
tween two execution traces. We perform enhanced dy-
namic slicing and symbolic execution to compare the
logic of instructions that impact on the observable behav-
iors. Our approach improves existing semantics-based
binary diffing by 1) inferring whether two executable bi-
naries’ behaviors are conditionally equivalent; 2) detect-
ing the similarities or differences, whose effects spread
across multiple basic blocks. We have developed a pro-
totype, called BinSim, and performed empirical eval-
uations against sophisticated obfuscation combinations
and more than 1,000 recent malware samples, includ-
ing now-infamous crypto ransomware. Our experimental
results show that BinSim can successfully identify fine-
grained relations between obfuscated binaries, and out-
perform existing binary diffing tools in terms of better
resilience and accuracy.

1 Introduction

An inherent challenge for reverse engineering is the
source code of the program under examination is typi-
cally absent. The binary executable becomes the only
available resource to be analyzed. The techniques to de-

tect the difference between two executables (binary diff-
ing) have been applied to a broad range of reverse en-
gineering tasks. For example, the difference between a
pre-batched binary and its updated version reveals the
fixed vulnerability [23, 54], and such information can
be exploited by attackers to quickly generate “1-day”
exploit [9, 50]. The similarity between an intellectual
property protected binary and a suspicious binary indi-
cates a potential case of software plagiarism [41, 73]. A
more appealing application emerges in malware analysis.
According to the latest Panda Security Labs study [53],
many malware samples in circulation are not brand new
but rather evolutions of previously known malware code.
Relentless malware developers typically apply various
obfuscation schemes (e.g., packer, polymorphism, meta-
morphism, and code virtualization) [51, 57] to camou-
flage arresting features, circumvent malware detection,
and impede reverse engineering attempts. Therefore, an
obfuscation-resilient binary diffing method is of great ne-
cessity.

Pervasive code obfuscation schemes have driven bi-
nary diffing methods towards detecting semantic similar-
ity despite syntactical difference (e.g., different instruc-
tion sequences or byte N-grams). Existing semantics-
aware binary diffing can be classified into two cate-
gories. The first one compares runtime execution behav-
iors rather than instruction bytes. Since dynamic analysis
has good resilience against code obfuscation [48], there
has been a notable amount of work to measure the simi-
larities of program behavior features, such as system call
sequences and dependency graphs [6, 12, 14]. However,
the program of interest may not involve unique system
call sequence [73]. Furthermore, dynamic-only methods
neglect subtle differences that do not reflect on the be-
havior change. In that case, two matched system calls
may carry different meanings.

The second category relies on measuring the seman-
tics of two pieces of binary code [54, 41, 37, 25, 43],
which is usually based on basic block semantics mod-

1

eling. At a high level, it represents the input-output
relations of a basic block as a set of symbolic for-
mulas, which are later proved by either a constraint
solver [41, 15, 25, 43], random sampling [54] or hash-
ing [37] for equivalence. Although these tools are effec-
tive against moderate obfuscation within a basic block,
such as register swapping, instruction reordering, in-
struction substitution, and junk code insertion [51], they
exhibit a common “block-centric” limitation [13, 37];
that is, it is insufficient to capture the similarities or
differences that go beyond a single basic block bound-
ary. This issue stems from the fact that the effect of
code transformations spreads across basic blocks, such
as return-oriented programming encoding [40, 55], virtu-
alization obfuscation’s decode-dispatch loop [61], covert
computation [59], and different implementation algo-
rithms [56].

In this paper, we propose a hybrid method, BinSim,
to address the limitations of existing binary diffing ap-
proaches. We attempt to identify fine-grained relations
between obfuscated binary code. BinSim leverages a
novel concept and technique called System Call Sliced
Segments and their Equivalence Checking. This new
technique relies on system or API calls1 to slice out cor-
responding code segments and then check their equiv-
alence with symbolic execution and constraint solving.
Starting from the observable behavior, our approach
integrates symbolic execution with dynamic backward
slicing to compare the behavior-related instruction seg-
ments. We find that two matched system calls together
with their arguments may carry different meanings. Our
approach can answer whether two matched API calls
are conditional equivalent [31]. Note that the behavior-
related instruction segments typically bypass the bound-
ary of a basic block so that we are more likely to detect
similarities or differences that spread across basic blocks.

More precisely, we run two executables in tandem un-
der the same input and environment to record their de-
tailed execution data. Then, we rely on an advanced
bioinformatics-inspired approach [34] to perform system
call sequence alignment. After that, we trace back from
the arguments of the matched system calls to determine
instructions that directly (data flow) or indirectly (con-
trol flow) impact on the argument values. However, the
standard dynamic slicing algorithm [80] does not suf-
fice to operate at the obfuscated binaries. Our enhanced
backward slicing considers many tricky issues and deals
with obfuscation schemes that cause undesired slice ex-
plosion. Next, we calculate weakest preconditions (WP)
along the dynamic slice. The resulting WP formulas ac-
cumulated in the two slices are then submitted to a con-
straint solver to verify whether they are equivalent. Now

1The system calls in Windows are named as native API. We also
consider part of Windows API calls as a proxy for system calls.

determining whether two matched system calls are truly
equivalent under current path conditions boils down to a
query of equivalence checking.

We have developed a prototype of BinSim on top of
the BitBlaze [66] binary analysis platform. Experimen-
tal results on a range of advanced obfuscation schemes
are encouraging. Compared with a set of existing bi-
nary diffing tools, BinSim exhibits better resilience and
accuracy. We also evaluate BinSim and existing tools
on more than 1,000 recent malware samples, includ-
ing highly dangerous and destructive crypto-ransomware
(e.g., CryptoWall) [32, 33, 58]. The results show that
BinSim can successfully identify fine-grained relations
between obfuscated malware variants. We believe Bin-
Sim is an appealing method to complement existing mal-
ware defenses.

Scope and Contributions BinSim is mainly designed
for fine-grained individual binary diffing analysis. It is
an ideal fit for security analysts who need further investi-
gation on two suspicious binaries. The previous work on
large-scale coarse-grained malware comparison [6, 28] is
orthogonal and complementary to BinSim. In summary,
the contributions of this paper are as follows.

• BinSim presents a novel concept, System Call
Sliced Segment Equivalence Checking, that relies
on system or API calls to slice out corresponding
code segments and then checks their equivalence
with symbolic execution and constraint solving.

• BinSim can detect the similarities or differences
across multiple basic blocks. Therefore, BinSim
overcomes the “block-centric” limitation (Existing
Method 2) to a great extent. Compared to dynamic-
only approaches (Existing Method 1), BinSim pro-
vides more precise results, such as whether two pro-
grams’ behaviors are conditionally equivalent.

• Performing dynamic slicing on the obfuscated bi-
naries is rather tricky and complicated. The redun-
dant instructions introduced by indirect memory ac-
cess and fake control/data dependency can poison
the slicing output. We improve the standard algo-
rithm to produce more precise result.

• Unlike previous work that evaluates the efficacy
of binary diffing either on different program ver-
sions [7, 25, 49], different compiler optimization
levels [21, 41] or considerably moderate obfusca-
tion [37, 41], we evaluate BinSim rigorously against
sophisticated obfuscation combinations and recent
malware. To the best of our knowledge, this is the
first work to evaluate binary diffing in such scale.

2

2 Motivation and Overview

In this section, we first discuss the drawbacks of current
semantics-aware binary diffing approaches. This also in-
spires us to propose our method. We will show C code
for understanding motivating examples even though Bin-
Sim works on binary code. At last, we introduce the ar-
chitecture of BinSim.

2.1 Motivation

Binary diffing methods based on behavior features (e.g.,
system call sequence or dependency graph) are prevalent
in comparing obfuscated programs, in which the accu-
rate static analysis is typically not feasible [48]. How-
ever, such dynamic-only approaches may disregard some
real different semantics, which are usually caused by in-
struction level execution differences. Figure 1 presents
such a counterexample, which lists three similar pro-
grams in the view of source code and their system call
dependencies. Given any input x ≥ 0, the three sys-
tem call sequences (NtCreateFile → NtWriteFile

→ NtClose) together with their arguments are identi-
cal. Besides, these three system calls preserve a data
flow dependency as well: one’s return value is passed to
another’s in-argument (as shown in Figure 1(d)). There-
fore, no matter comparing system call sequences or de-
pendency graphs, these three programs reveal the same
behavior. However, if we take a closer look at line 3
and 4 in Figure 1(b), the two statements are used to cal-
culate the absolute value of x. That means the input
value y for NtWriteFile in Figure 1(a) and Figure 1(b)
differs when x < 0. In another word, these two pro-
grams are only conditionally equivalent. Note that by
random testing, there is only about half chance to find
Figure 1(a) and Figure 1(b) are different. Recently, the
“query-then-infect” pattern has become common in mal-
ware attacks [77], which only target specific systems in-
stead of randomly attacking victim machines. When this
kind of malware happens to reveal the same behavior,
dynamic-only diffing methods may neglect such subtle
conditional equivalence and blindly conclude that they
are equivalent under all conditions.

Another type of semantics-aware binary diffing uti-
lizes symbolic execution to measure the semantics of the
binary code. The core of current approaches is matching
semantically equivalent basic blocks [25, 37, 41, 43, 54].
The property of straight-line instructions with one en-
try and exit point makes a basic block a good fit for
symbolic execution (e.g., no path explosion). In con-
trast, symbolic execution on a larger scope, such as a
function, has two challenges: 1) recognizing function
boundary in stripped binaries [5]; 2) performance bot-
tleneck even on the moderate size of binary code [46].

Such block-centric methods are effective in defeating
instruction obfuscation within a basic block. Figure 2
presents two equivalent basic blocks whose instructions
are syntactically different. Their output symbolic formu-
las are verified as equivalent by a constraint solver (e.g.,
STP [24]). However, there are many cases that the se-
mantic equivalence spread across the boundary of a ba-
sic block. Figure 3 presents such an example, which con-
tains three different implementations to count the number
of bits in an unsigned integer (BitCount). Figure 3(a)
and Figure 3(b) exhibit different loop bodies, while Fig-
ure 3(c) has merely one basic block. Figure 3(c) imple-
ments BitCount with only bitwise operators. For the
main bodies of these three examples, we cannot even find
matched basic blocks, but they are indeed semantically
equivalent. Unfortunately, current block-centric binary
diffing methods fail to match these three cases. The dis-
assembly code of these three BitCount algorithms are
shown in Appendix Figure 11.

Figure 4 shows another counterexample, in which the
semantic difference spreads across basic blocks. When
a basic block produces multiple output variables, exist-
ing block-centric binary diffing approaches try all possi-
ble permutations [54, 41, 25] to find a bijective mapping
between the output variables. In this way, the two basic
block pairs in Figure 4 (BB1 vs. BB1’ and BB2 vs. BB2’)
are matched. Please note that the input variables to BB2
and BB2’ are switched. If we consider the two sequen-
tial executed basic blocks as a whole, they will produce
different outputs. However, the current block-centric ap-
proach does not consider the context information such as
the order of matched variables. Next, we summarize pos-
sible challenges that can defeat the block-centric binary
diffing methods.

1. The lack of context information such as Figure 4.

2. Compiler optimizations such as loop unrolling
and function inline, which eliminate conditional
branches associated.

3. Return-oriented programming (ROP) is originally
designed as an attack to bypass data execution pre-
vention mechanisms [60]. The chain of ROP gad-
gets will result in a set of small basic blocks.
ROP has been used as an effective obfuscation
method [40, 55] to clutter control flow.

4. Covert computation [59] utilizes the side effects
of microprocessors to hide instruction semantics
across a set of basic blocks.

5. The same algorithm but with different implemen-
tations such as Figure 3, Figure 12, and Fig-
ure 13. More examples can be found in Hacker’s

3

1: int x, y; // x is an input
2: HANDLE out = CreateFile("a.txt", …);
3: y = x + x;
4: WriteFile(out, &y, sizeof y, …);
5: CloseHandle(out);

1: int x, y; // x is an input
2: HANDLE out = CreateFile ("a.txt", …);
3: y = x << 1;
4: WriteFile (out, &y, sizeof y, …);
5: CloseHandle (out);

1: int x, y, z; // x is an input
2: HANDLE out = CreateFile("a.txt", …);
3: z = (x >> 31);
4: z = (x ^ z) - z; // z is the absolute value of x
5 y = 2 * z;
6: WriteFile(out, &y, sizeof y, …);
7: CloseHandle(out);

(a) (b)

(c)

NtClose

NtCreateFile

NtWriteFile

HANDLE: out
int: y

input

HANDLE: out

(d) System call (Windows native API)
sequence and dependency

Figure 1: Example: system calls are conditional equivalent.

Basic block 1

xor eax, -1
add eax, 1
jmp loc_0022

Output

Symbolic input:
eax = 1

eax = (1 ^ -1) + 1

Semantically
equivalent

Basic block 2

not ebx
not ebx
neg ebx
jmp loc_0022

Output

Symbolic input:
ebx = 2

ebx = (~(~ 2)) × -1

Figure 2: Semantically equivalent basic blocks with dif-
ferent instructions.

Delight [74], which is a collection of programming
optimization tricks with bitwise operations.

6. Control flow obfuscation schemes, such as opaque
predicates [17] and control flow flattening [71], can
break up one basic block into multiple ones.

7. Virtualization obfuscation decode-dispatch
loop [61, 79] generates a sequence of basic
blocks to interpret one x86 instruction. This
difficulty is further exacerbated by multi-level
virtualization.

BinSim’s hybrid approach can naturally break basic
block boundaries and link related instructions. However,

we have to take extra efforts to address the last two chal-
lenges. We will discuss them in Section 4.

2.2 Methodology
Figure 5 illustrates BinSim’s core method. Given two
programs P and P′, our approach performs dynamic anal-
ysis as well as symbolic execution to compare how the
matched system call arguments are calculated, instead
of their exhibited values. We first run P and P′ in tan-
dem under the same input and environment to collect the
logged traces together with their system call sequences.
Then we do the system call sequences alignment to get
a list of matched system call pairs (step 1). Another
purpose of system call alignment is to fast identify pro-
grams exhibiting very different behaviors. After that,
starting from the matched system calls arguments, we
conduct backward slicing on each logged trace to iden-
tify instructions that affect the argument both directly
(data flow) and indirectly (control flow). We extend the
standard dynamic slicing algorithm to deal with the chal-
lenges when working on obfuscated binaries. Next, we
compute the weakest precondition (WP) along each slice
(step 2). In principle, WP is a symbolic formula that
captures the data flow and control flow that affect the
calculation of the argument. However, cryptographic
functions typically generate complicated symbolic rep-
resentations that could otherwise be hard to solve. To
walk around this obstacle, we identify the possible cryp-
tographic functions from the sliced segments and decom-

4

1: void BitCount2(unsigned int n)
2: {
3: unsigned int count = 0;
4: while (n != 0) {
5: n = n & (n-1);
6: count++;
7: }
8: printf ("%d", count);
9: }

1: void BitCount3(unsigned int n)
2: {
3: n = (n & (0x55555555)) +

((n >> 1) & (0x55555555));
4: n = (n & (0x33333333)) +

((n >> 2) & (0x33333333));
5: n = (n & (0x0f0f0f0f)) +

((n >> 4) & (0x0f0f0f0f));
6: n = (n & (0x00ff00ff)) +

((n >> 8) & (0x00ff00ff));
7: n = (n & (0x0000ffff)) +

((n >> 16) & (0x0000ffff));
8: printf ("%d", n);
9: }

(b) (c)

1: void BitCount1(unsigned int n)
2: {
3: unsigned int count = 0;
4: for (count = 0; n; n >>= 1)
5: count += n & 1 ;
6: printf ("%d", count);
7: }

(a)

Figure 3: Semantic equivalence spreads across basic blocks.

(a)

in (i, j)

out (a, b)

in (a, b)

out (c) = (i+1) - (j << 2)

BB1:

BB2:

a = i + 1
b = j << 2

c = a - b

(b)

in (i’, j’)

out (a’, b’)

in (b’, a’)

out (c’) = (j’ << 2) - (i’ + 1)

BB1':

BB2':

a’ = i’ + 1
b’ = j’ << 2

c’ = b’ - a’

Semantically
different

Figure 4: Semantic difference spreads across basic
blocks.

pose them from equivalence checking (step 3). Then we
utilize a constraint solver to verify whether two WP for-
mulas are equivalent (step 4). Following the similar style,
we compare the remaining system call pairs. At last, we
perform an approximate matching on identified crypto-
graphic functions (step 5) and calculate the finial simi-
larity score.

Now we use the examples shown in Section 2.1
to describe how BinSim improves existing semantics-
based binary diffing approaches. Assume we have
got the aligned system call sequences shown in Fig-
ure 1(d). Starting from the address of the argument y
in NtWriteFile, we do backward slicing and compute
WP with respect to y. The results of the three programs
are shown as follows.

ψ1a : x+ x

ψ1b : 2× ((x∧ (x >> 31))− (x >> 31))
ψ1c : x << 1

To verify whether ψ1a = ψ1b, we check the equivalence
of the following formula:

x+ x = 2× ((x∧ (x >> 31))− (x >> 31)) (1)

Similarly, we check whether ψ1a = ψ1c by verifying
the formula:

x+ x = x << 1 (2)

The constraint solver will prove that Formula 2 is al-
ways true but Formula 1 is not. Apparently, we can find
a counterexample (e.g., x = −1) to falsify Formula 1.
Therefore, we have ground truth that the NtWriteFile

in Figure 1(a) and Figure 1(c) are truly matched, while
NtWriteFile in Figure 1(a) and Figure 1(b) are condi-
tionally equivalent (when the input satisfies x≥ 0).

For the three different implementations shown in Fig-
ure 3, BinSim works on the execution traces under the
same input (n). In this way, the loops in Figure 3 have
been unrolled. Starting from the output argument, the
resulting WP captures the semantics of “bits counting”
across basic blocks. Therefore, we are able to verify that
the three algorithms are equivalent when taking the same
unsigned 32-bit integer as input. Similarly, we can verify
that the two code snippets in Figure 4 are not semanti-
cally equivalent.

2.3 Architecture
Figure 6 illustrates the architecture of BinSim, which
comprises two stages: online trace logging and offline
comparison. The online stage, as shown in the left side
of Figure 6, involves two plug-ins built on Temu [66],
a whole-system emulator: generic unpacking and on-
demand trace logging. Temu is also used as a malware
execution sandbox in our evaluation. The recorded traces
are passed to the offline stage of BinSim for comparison
(right part of Figure 6). The offline stage consists of three
components: preprocessing, slicing and WP calculation,
and segment equivalence checker. Next, we will present
each step of BinSim in the following two sections.

5

Syscall1 (arg1, arg2) Syscall1' (arg1, arg2)

Syscall2 (arg1) Syscall2' (arg1)
.

.

.

.

.

.

(1)

(1)

(3)

(2) (2)

(4)

(5)

Program P Program P'

f3 f3’

wp1 wp1’

f3 f3’

Cryptographic

function

Cryptographic

function

wp2 wp2’

wp1 wp1’

wp2 wp2’

(3)

Figure 5: System call sliced segment equivalence check-
ing steps: (1) system call alignment; (2) dynamic slicing
and weakest precondition calculation; (3) cryptographic
function detection; (4) equivalence checking; (5) crypto-
graphic function approximate matching.

3 On-demand Trace Logging

BinSim’s online logging stage records the needed infor-
mation for the subsequent steps. The logged trace data
consist of three parts: 1) instruction log contains each ex-
ecuted instruction’s x86 opcode and values of operands;
2) memory log stores memory access addresses, which
facilitate binary code slicing; 3) system calls invoked and
their data flow dependencies. In general, not all of the
trace data are of interest. For example, a common op-
timization adopted by the offline symbolic execution is
“function summary” [10]. For some well-known library
functions that have explicit semantics (e.g., string opera-
tion functions), we can turn off logging when executing
them and generate a symbolic summary correspondingly
in the offline analysis. Another example is many mal-
ware samples exhibit the malicious behavior only after
the real payload is unpacked. Our generic unpacking
plug-in, similar to the hidden code extractor [30], sup-
ports recording the execution trace that comes from real
payload instead of various unpacking routines.

One common attack to system call recording is adding
irrelevant system calls on purpose, which can also poison
the system call sequences alignment. To remove system
call noises, we leverage Temu’s customizable multi-tag
taint tracking feature to track data flow dependencies be-
tween system calls. Kolbitsch et al. [36] have observed
three possible sources of a system call argument: 1) the
output of a previous system call; 2) the initialized data
section (e.g., .bss segment); 3) the immediate argument
of an instruction (e.g., push 0). Except for the imme-
diate argument, we label the system call outputs and the
value read from the initialized data section as different

taint tags. In this way, the irrelevant system calls without
data dependency will be filtered out. The tainted argu-
ments of aligned system call will be taken as the starting
point of our backward slicing.

We also consider the parameter semantics. For ex-
ample, although NtClose takes an integer as input, the
source of the parameter should point to an already
opened device rather than an instruction operand (see
Figure 1). Therefore, the fake dependency such as “xor
eax, eax; NtClose(eax);” will be removed. An-
other challenge is malware could invoke a different set
of system calls to achieve the same effect. Recent work
on “replacement attacks” [44] shows such threat is feasi-
ble. We will discuss possible workaround in Section 6.

4 Offline Analysis

4.1 Preprocessing
When the raw trace data arrive, BinSim first lifts x86 in-
structions to Vine IL. The static single assignment (SSA)
style of Vine IL will facilitate tracking the use-def chain
when performing backward slicing. Besides, Vine IL is
also side effect free. It explicitly represents the setting of
the eflags register bits, which favors us to identify in-
structions with implicit control flow and track ROP code.
For example, the carry flag bit (cf) is frequently used by
ROP to design conditional gadget [60].

Then we align the two collected system call sequences
to locate the matched system call pairs. System call se-
quence alignment has been well studied in the previous
literature [34, 76]. The latest work, MalGene [34], tailors
Smith-Waterman local alignment algorithm [65] to the
unique properties of system call sequence, such as lim-
ited alphabet and sequence branching caused by thread
scheduling. Compared to the generic longest common
subsequences (LCS) algorithm, MalGene delivers more
accurate alignment results. There are two key scores in
Smith-Waterman algorithm: similarity function on the
alphabet and gap penalty scheme. MalGene customizes
these two scores for better system call alignment.

Our system call alignment adopts a similar approach
as MalGene [34] but extends the scope of critical system
calls, whose alignments are more important than oth-
ers. Since MalGene only considers the system call se-
quence deviation of the same binary under different run-
time environments, the critical system calls are subject
to process and thread operations. In contrast, BinSim
focuses on system call sequence comparisons of poly-
morphic or metamorphic malware variants. Our critical
system calls include more key system object operations.
Appendix Table 7 lists some examples of critical system
calls/Windows API we defined. Note that other system
call comparison methods, such as dependency graph iso-

6

Online Offline

Binary 1

Binary 2

Generic

Unpacking

Temu
(1)

Preprocessing Segment Equivalence

Checker

Similarity

Score

Trace

Logging
Syscall

Alignment

IL

Converter

(2) (3)Slicing and WP

Calculation

Cryptographic

Function Detection

(4)

Figure 6: Schematic overview of BinSim. The output for each processing: (1) unpacked code, instruction log, memory
log, and system call sequences; (2) IL traces and initial matched system call pairs; (3) weakest preconditions of system
call sliced segments; (4) identified cryptographic functions.

morphism [14] and tree automata inference [3] are or-
thogonal to our approach.

4.2 Dynamic Slicing Binary Code

After system calls alignment, we will further examine the
aligned system calls to determine whether they are truly
equivalent. To this end, commencing at a tainted system
call’s argument, we perform dynamic slicing to back-
track a chain of instructions with data and control depen-
dencies. The slice criterion is 〈eip, argument〉, while eip
indicates the value of instruction pointer and argument

denotes the argument taken as the beginning of back-
wards slicing. We terminate our backward slicing when
the source of slice criterion is one of the following con-
ditions: the output the previous system call, a constant
value, or the value read from the initialized data sec-
tion. Standard dynamic slicing algorithm [1, 80] relies
on program dependence graph (PDG), which explicitly
represents both data and control dependencies. However,
compared to the source code slicing, dynamic slicing on
the obfuscated binaries is never a textbook problem. The
indirect memory access of binary code will pollute the
conventional data flow tracking. Tracking control depen-
dencies in the obfuscated binary code by following ex-
plicit conditional jump instructions is far from enough.
Furthermore, the decode-dispatch loop of virtualization
obfuscation will also introduce many fake control de-
pendencies. As a result, conventional dynamic slicing
algorithms [1, 80] will cause undesired slice explosion,
which will further complicate weakest precondition cal-
culation. Our solution is to split data dependencies and
control dependencies tracking into three steps: 1) index
and value based slicing that only consider data flow; 2)
tracking control dependencies; 3) remove the fake con-
trol dependencies caused by virtualization obfuscation
code dispatcher.

BinSim shares the similar idea as Coogan et al. [19] in
that we both decouple tracing control flow from data flow
when handling virtualization obfuscation. Coogan et al.’s
approach is implemented through an equational reason-
ing system, while BinSim’s dynamic slicing is built on

an intermediate language (Vine IL). However, BinSim is
different from Coogan et al.’s work in a number of ways,
which we will discuss in Section 7.

4.2.1 Index and Value Based Slicing

We first trace the instructions with data dependencies by
following the “use-def” chain (ud-chain). However, the
conventional ud-chain calculation may result in the pre-
cision loss when dealing with indirect memory access, in
which general registers are used to compute memory ac-
cess index. There are two ways to track the ud-chain of
indirect memory access, namely index based and value
based. The index based slicing, like the conventional ap-
proach, follows the ud-chain related the memory index.
For the example of mov edx [4*eax+4], the instruc-
tions affecting the index eax will be added. Value based
slicing, instead, considers the instructions related to the
value stored in the memory slot. Therefore, the last in-
struction that writes to the memory location [4*eax+4]

will be included. In most cases, the value based slicing
is much more accurate. Figure 7 shows a comparison be-
tween index based slicing and value based slicing on the
same trace. Figure 7(a) presents the C code of the trace.
In Figure 7(b), index based slicing selects the instruc-
tions related to the computation of memory index j =

2*i + 1. In contrast, value based slicing in Figure 7(c)
contains the instructions that is relevant to the computa-
tion of memory value A[j] = a + b, which is exactly
the expected slicing result. However, there is an excep-
tion that we have to adopt index based slicing: when an
indirect memory access is a valid index into a jump table.
Jump tables typically locate at read-only data sections or
code sections, and the jump table contents should not be
modified by other instructions. Therefore, we switch to
track the index ud-chain, like eax rather than the mem-
ory content.

4.2.2 Tracking Control Dependency

Next, we include the instructions that have control de-
pendencies with the instructions in the last step. In ad-
dition to explicit conditional jump instructions (e.g., je

7

Index based slicing Value based slicing(a) Source code (b) (c)

j = 2*i + 1;

A[j] = a + b;

print A[j];

mov eax, [ebp-8]

add eax, eax

add eax, 1

mov [ebp-4], eax

mov eax, [ebp-56]

mov edx, [ebp-52]

add edx, eax

mov eax, [ebp-4]

mov [ebp-48+eax*4], edx

mov eax, [ebp-4]

mov eax, [ebp-48+eax*4]

mov edi, eax

call print

mov eax, [ebp-8]

add eax, eax

add eax, 1

mov [ebp-4], eax

mov eax, [ebp-56]

mov edx, [ebp-52]

add edx, eax

mov eax, [ebp-4]

mov [ebp-48+eax*4], edx

mov eax, [ebp-4]

mov eax, [ebp-48+eax*4]

mov edi, eax

call print

Figure 7: Index based vs. Value based slicing.

and jne), obfuscators may hide control flow into indi-
rect jumps by using encoding function to calculate the
real branch [78]. Our solution is to trace how the control
transfer is calculated. We observe that most x86 con-
ditional control transfers depend on certain bit value of
the eflags register (e.g., zf and cf). Even obfusca-
tors try to hide the conditional jumps, they still need to
use arithmetic operations on certain eflags bits (e.g.,
ROP obfuscation [40, 55] and covert computation [59]).
To identify these implicit control transfers, our approach
trace the data flow of eflags bit value; that is, the in-
structions that calculate the bit value of the eflags are
added into the slice. Note that in addition to the explicit
conditional jump instructions, there are quite a number of
instructions that have conditional jump semantics. For
example, cmovne ebx,edx moves the value of edx to
ebx according to zf flag. We also notice a case that
the conditional logic is implemented without eflags:
jecxz jumps if register ecx is zero. Currently BinSim
supports all these special cases, which are summarized
in Appendix Table 8.

4.2.3 Dispatcher Identification

Virtualization obfuscation, a great challenge to binary
code slicing [61, 79], replaces the original binary code
with new type of bytecode, and a specific interpreter is
attached to interpret each bytecode. Due to the ease
of implementing an instruction set emulator [64], cur-
rent tools adopt decode-dispatch loop based interpre-
tation [69, 52, 16]. Besides, the virtualization byte-
code is designed as stack architecture style [62], which
has a simple representation but requires more statements
for a given computation. One instruction is typically
translated to a sequence of bytecode operations on the
stack values through the decode-dispatch loop. As a re-
sult, the collected slice from the above steps will con-
tain a large number of redundant instructions caused by
decode-dispatch loop iterations. We observe that each
decode-dispatch loop iteration has the following com-
mon features.

1. It is a sequence of memory operations, ending with
an indirect jump.

2. It has an input register a as virtual program counter
(VPC) to fetch the next bytecode (e.g., ptr[a]).
For example, VMProtect [69] takes esi as VPC
while Code Virtualizer [52] chooses al register.

3. It ends with an indirect jump which dispatches to a
bytecode handler table. The index into the jump ta-
ble has a data dependency with the value of ptr[a].

Our containment technique is to first identify possible
decode-dispatch loop iterations in the backward slice ac-
cording to the above common features. For each instruc-
tion sequence ending with an indirect jump, we mark
the input registers as a1,a2, ...an and output registers as
b1,b2, ...bn. Then we check whether there is an output
register bi meets the two heuristics:

1. bi is tainted by the data located in ptr[a j].

2. The instruction sequence ends with jmp ptr

[bi*(table stride) + table base].

After that, we will remove the fake control dependencies
caused by virtualization obfuscation code dispatcher. In
our preliminary testing, five virtualization obfuscation
protected instructions produces as many as 3,163 in-
structions, and most of them are related to the decode-
dispatch loop. After our processing, the number of in-
struction is reduced to only 109.

4.3 Handling Cryptographic Functions
Now-infamous crypto ransomware extort large ransom
by encrypting the infected computer’s files with stan-
dard cryptographic functions [33]. One ransomware
archetype typically evolves from generation to genera-
tion to produce a large number of new strains. They
may refine old versions incrementally to better sup-
port new criminal business models. In addition to the
generic detection methods based on monitoring file sys-
tem anomalies [32, 58], it is very interesting to investi-
gate this emerging threat with BinSim, such as identify-
ing ransomware variant relationships and investigate ran-
somware evolution. However, cryptographic functions
have been known to be a barrier to SMT-based security
analysis in general [11, 72] because of the complicated
input-output dependencies. Our backward slicing step
will produce a quite long instruction segment, and the
corresponding equivalence checking will become hard to
solve as well [67].

We observer that cryptographic function execution has
almost no interaction with system calls except the ones
are used for input and output. For example, crypto ran-
somware take the original user’s file as input, and then

8

overwrite it with the encrypted version. Inspired by Ca-
ballero et al.’s work [11], we do a “stitched symbolic
execution” to walk around this challenge. Specifically,
we first make a forward pass over the sliced segments
to identify the possible cryptographic functions between
two system calls. We apply the advanced detection
heuristics proposed by Gröbert et al. [27] (e.g., exces-
sive use of bitwise operations, instruction chains, and
mnemonic const values) to quickly match known cryp-
tographic function features. If a known cryptographic
function is detected, we will turn off the weakest pre-
condition calculation and equivalence checking. In Sec-
tion 4.5, we will discuss how to approximately measure
the similarity of detected cryptographic functions.

4.4 Weakest Precondition Calculation
Let’s assume the slice we collected (S) contains a se-
quence of instructions [i1, i2, ..., in]. Our weakest pre-
condition (WP) calculation takes (S) as input, and the
state of the execution to the given API call’s argument
as the postcondition (P). Inductively, we first calculate
wp(in,P) = Pn−1, then wp(in−1,Pn−1) = Pn−2 and un-
til wp(i1,P1) = P0. The weakest precondition, denoted
as wp(S,P) = P0, is a boolean formula over the inputs
that follow the same slice (S) and forces the execution
to reach the given point satisfying P. We adopt a simi-
lar algorithm as Banerjee et al.’s [4] to compute the WP
for every statement in the slice, following both data de-
pendency and control dependency. The resultant WP for-
mula for a program point can be viewed as a conjunction
of predicates accumulated before that point, in the fol-
lowing form:

WP = F1∧F2∧ ...∧Fk.

Opaque predicates [17], a popular control flow obfus-
cation scheme, can lead to a very complicated WP for-
mula by adding infeasible branches. We apply recent
opaque predicate detection method [45] to identify so
called invariant, contextual, and dynamic opaque pred-
icates. We remove the identified opaque predicate to re-
duce the size of the WP formula.

4.5 Segment Equivalence Checking
We identify whether two API calls are semantically
equivalent by checking the equivalence of their argu-
ments’ weakest preconditions. To this end, we perform
validity checking for the following formula.

wp1 ≡ wp2∧arg1 = arg2 (3)

Different from existing block-centric methods, whose
equivalence checking is limited at a single basic block

level, our WP calculation captures the logic of a seg-
ment of instructions that go across the boundaries of ba-
sic blocks. Our method can offer a logical explanation
of whether syntactically different instruction segments
contribute to the same observable behavior. Frequent in-
vocation of constraint solver imposes a significant over-
head. Therefore, we maintain a HashMap structure to
cache the results of the previous comparisons for better
performance.

To quantitatively represent different levels of similar-
ity and facilitate our comparative evaluation, we assign
different scores (0.5∼ 1.0) based on the already aligned
system call sequences. The similarity sore is tuned with
our ground truth dataset (Section 5.2) by two metrics:
precision and recall. The precision is to measure how
well BinSim identifies different malware samples; while
recall indicates how well BinSim recognizes the same
malware samples but with various obfuscation schemes.
An optimal similarity sore should provide high precision
and recall at the same time. We summarize the selection
of similarity score as follows.

1. 1.0: the arguments of two aligned system calls
pass the equivalence checking. Since we have
confidence these system calls should be perfectly
matched, we represent their similarity with the
highest score.

2. 0.7: the sliced segments of two aligned system calls
are corresponding to the same cryptographic algo-
rithm (e.g. AES vs. AES). We assign a slightly
lower score to represent our approximate matching
of cryptographic functions.

3. 0.5: the aligned system call pairs do not satisfy the
above conditions. The score indicates their argu-
ments are either conditionally equivalent or seman-
tically different.

Assume the system call sequences collected from pro-
gram a and b are Ta and Tb, and the number of aligned
system calls is n. We define the similarity calculation as
follows.

Sim(a,b) =
∑

n
i=1 Similarity Score

Avg{|Ta|, |Tb|}
(4)

∑
n
i=1 Similarity Score sums the similarity score of

aligned system call pairs. To balance the different length
of Ta and Tb and be sensitive to system call noises in-
sertion, we use the average number of two system call
sequences as the denominator. The value of Sim(a,b)
ranges from 0.0 to 1.0. The higher Sim(a,b) value indi-
cates two traces are more similar.

9

Table 1: Different obfuscation types and their examples.

Type Examples

1 Intra-basic-block Register swapping, junk code,
instructions substitution and reorder

2 Control flow Loop unrolling, opaque predicates,
control flow flatten, function inline

3 ROP Synthetic benchmarks collected
from the reference [79]

4 Different implementations
BitCount (Figure 3)
isPowerOfTwo (Appendix Figure 12)
flp2 (Appendix Figure 13)

5 Covert computation[59] Synthetic benchmarks
6 Single-level virtualization VMProtect [69]

7 Multi-level virtualization Synthetic benchmarks collected
from the reference [79]

5 Experimental Evaluation

We conduct our experiments with several objectives.
First and foremost, we want to evaluate whether BinSim
outperforms existing binary diffing tools in terms of bet-
ter obfuscation resilience and accuracy. To accurately
assess comparison results, we design a controlled dataset
so that we have a ground truth. We also study the effec-
tiveness of BinSim in analyzing a large set of malware
variants with intra-family comparisons. Finally, perfor-
mance data are reported.

5.1 Experiment Setup
Our first testbed consists of Intel Core i7-3770 processor
(Quad Core with 3.40GHz) and 8GB memory, running
Ubuntu 14.04. We integrate FakeNet [63] into Temu to
simulate the real network connections, including DNS,
HTTP, SSL, Email, FTP etc. We carry out the large-scale
comparisons for malware variants in the second testbed,
which is a private cloud containing six instances running
simultaneously. Each instance is equipped with a duo
core, 4GB memory, and 20GB disk space. The OS and
network configurations are similar to the first testbed.
Before running a malware sample, we reset Temu to a
clean snapshot to eliminate the legacy effect caused by
previous execution (e.g., modify registry configuration).
To limit the possible time-related execution deviations,
we utilize Windows Task Scheduler to run each test case
at the same time.

5.2 Ground Truth Dataset
Table 1 lists obfuscation types that we plan to evaluate
and their examples. Intra-basic-block obfuscation meth-
ods (Type 1) have been well handled by semantics-based
binary diffing tools. In Section 2.1, we summarize pos-
sible challenges that can defeat the block-centric binary
diffing methods, and Type 2 ∼ Type 7 are correspond-
ing to such examples. We collect eight malware source

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y
sc

or
e

 Right pairs
 Wrong pairs

BinSim

Feature set

Syscall align.

CoP
iBinHunt

DarunGrim

BinDiff

Figure 8: Similarity scores change from right pairs to
wrong pairs.

code with different functionalities from VX Heavens2.
We investigate the source code to make sure they are dif-
ferent, and each sample can fully exhibit its malicious
behavior in the runtime. Besides, we also collect syn-
thetic benchmarks from the previous work. The purpose
is to evaluate some obfuscation effects that are hard to
automate. Our controlled dataset statistics are shown in
Table 2. The second column of Table 2 lists different
obfuscation schemes and combinations we applied.

In addition to BinSim, we also test other six repre-
sentative binary diffing tools. BinDiff [23] and Darun-
Grim [50] are two popular binary diffing products in in-
dustry. They rely on control flow graph and heuristics to
measure similarities. CoP [41] and iBinHunt [43] repre-
sent “block-centric” approaches. Based on semantically
equivalent basic blocks, iBinHunt compares two execu-
tion traces while CoP identifies longest common subse-
quence with static analysis. System call alignment and
feature set are examples of dynamic-only approaches.
“Feature set” indicates the method proposed by Bayer
et al. [6] in their malware clustering work. They abstract
system call sequence to a set of features (e.g., OS object,
OS operations, and dependencies) and measure the simi-
larities of two feature sets by Jaccard Index. For compar-
ison, we have implemented the approaches of CoP [41],
iBinHunt [43], and feature set [6]. The system call align-
ment is the same to the method adopted by BinSim.

5.3 Comparative Evaluation Results

Naively comparing these seven binary diffing tools with
their similarity scores is not informative3. It is also very
difficult to interpret precision and recall values because
each tool adopts different similarity metrics and thresh-

2http://vxheaven.org/src.php
3We have normalized all the similarity scores from 0.0∼ 1.0.

10

Table 2: Controlled dataset statistics. The obfuscation type numbers are defined in Table 1.

Sample Obfuscation type LoC # Online Offline (min)
(Normalized) Preprocess Slicing & WP STP (no/opt)

Malware
BullMoose 6 30 5X 1 2 1/0.5
Clibo 1+6 90 6X 1 2 2/0.8
Branko 1+2+6 270 8X 2 3 3/1
Hunatcha 2 340 8X 2 4 1/1
WormLabs 1 420 8X 2 6 3/2
KeyLogger 2 460 12X 2 6 4/2
Sasser 1+2+6 950 9X 3 8 4/3
Mydoom 1+2 3276 10X 3 10 6/4

Synthetic benchmark
ROP 3 449 6X 1 3 2/1
Different implementations 4 80 6X 1 2 2/0.8
Covert computation 5 134 6X 1 2 3/1
Multi-level virtualization 7 140 10X 4 12 5/3

Table 3: Absolute difference values of similarity scores under different obfuscation schemes and combinations.

Sample Obfuscation type BinDiff DarunGrim iBinHunt CoP Syscall alignment Feature set BinSim
BullMoose 6 0.58 0.56 0.39 0.61 0.08 0.10 0.08
Clibo 1+6 0.57 0.64 0.41 0.62 0.10 0.12 0.10
Branko 1+2+6 0.63 0.62 0.35 0.68 0.10 0.15 0.12
Hunatcha 2 0.40 0.42 0.19 0.30 0.12 0.17 0.12
WormLabs 1 0.10 0.12 0.03 0.03 0.08 0.12 0.05
KeyLogger 2 0.38 0.39 0.12 0.26 0.09 0.15 0.09
Sasser 1+2+6 0.62 0.62 0.42 0.58 0.12 0.18 0.10
Mydoom 1+2 0.42 0.38 0.10 0.38 0.10 0.15 0.05
ROP 3 0.63 0.54 0.49 0.52 0.10 0.10 0.10
Different implementations 4 0.48 0.39 0.48 0.52 0.05 0.10 0.05
Covert computation 5 0.45 0.36 0.44 0.45 0.05 0.10 0.05
Multi-level virtualization 7 0.68 0.71 0.59 0.69 0.15 0.18 0.16
Average
“Right pairs” vs. “Obfuscation pairs” 0.50 0.48 0.34 0.46 0.10 0.15 0.09
“Right pairs” vs. “Wrong pairs” 0.65 0.65 0.66 0.55 0.71 0.63 0.76

old. What matters is that a tool can differentiate right-
pair scores from wrong-pair scores. We first test how
their similar scores change from right pairs to wrong
pairs. For the right pair testing, we compare each sam-
ple in Table 2 with itself (no obfuscation). The average
values are shown in “Right pairs” bar in Figure 8. Then
we compare each sample with the other samples (no ob-
fuscation) and calculate the average values, which are
shown in “Wrong pairs” bar in Figure 84. The compar-
ison results reveal a similar pattern for all these seven
binary diffing tools: a large absolute difference value be-
tween the right pair score and the wrong pair score.

Next, we figure out how the similarity score varies un-
der different obfuscation schemes and combinations. We
first calculate the similarity scores for “Right pairs” (self
comparison) and “Obfuscation pairs” (the clean version
vs. its obfuscated version). Table 3 shows the absolute
difference values between “Right pairs” and “Obfusca-
tion pairs”. Since code obfuscation has to preserve se-

4It does not mean that higher is better on the similarity scores for the
right pairs, and lower is better for the wrong pairs. What is important
is how their similarity values change from right pairs to wrong pairs.

mantics [17], the small and consistent difference values
can indicate that a binary diffing tool is resilient to dif-
ferent obfuscation schemes and combinations. BinDiff,
DarunGrim, iBinHunt and CoP do not achieve a consis-
tent (good) result for all test cases, because their differ-
ence values fluctuate. The heuristics-based comparisons
adopted by BinDiff and DarunGrim can only handle mild
instructions obfuscation within a basic block. Since mul-
tiple obfuscation methods obfuscate the structure of con-
trol flow graph (e.g., ROP and control flow obfuscation),
the effect of BinDiff and DarunGrim are limited. CoP
and iBinHunt use symbolic execution and theorem prov-
ing techniques to match basic blocks, and therefore are
resilient to intra-basic-block obfuscation (Type 1). How-
ever, they are insufficient to defeat the obfuscation that
may break the boundaries of basic blocks (e.g., Type 2∼
Type 7 in Table 1). The last rows of Table 3 shows the av-
erage difference values for the “Right pairs” vs. “Obfus-
cation pairs” and “Right pairs” vs. “Wrong pairs”. The
closer for these two scores, the harder for a tool to set a
threshold or cutoff line to give a meaningful information
on the similarity score.

11

Table 4: Comparison of slice sizes (# instructions).

Sample Obfuscation type No-VMP Conventional BinSim
BullMoose 6 98 6,785 165
Clibo 1+6 156 16,860 238
Branko 1+2+6 472 31,154 520
Sasser 1+2+6 1,484 64,276 1,766
fibonacci 7 156 4,142 278

Table 5: Similarity score of four CryptoWall variants.

a vs. b a vs. c a vs. d b vs. c b vs. d c vs. d
0.92 0.83 0.32 0.78 0.33 0.37

Regarding dynamic-only methods (system call align-
ment and feature set), their scores are consistent for most
comparisons. The reason is dynamic-only approaches
are effective to defeat most code obfuscation schemes.
However, we notice a variant of Hunatcha worm ex-
hibits the malicious behavior under the condition of
systime.Month < 12. Without more detailed informa-
tion such as path conditions, both system call alignment
and feature set methods fail to identify such conditional
equivalence. This disadvantage is further manifested by
our large-scale malware comparisons, in which we find
out 11% variants are conditionally equivalent.

5.4 Offline Analysis Evaluation

In this section, we first evaluate BinSim’s dynamic slic-
ing when handling obfuscated binaries. We test BinSim
with VMProtect [69], an advanced commercial obfus-
cator. In addition to virtualization obfuscation, which
can cause slice size explosion, VMProtect also performs
intra-basic-block (Type 1) and control flow obfuscation
(Type 2). As shown in Table 4, we obfuscate the test
cases with multiple obfuscation combinations and multi-
level virtualization (Type 7). “No-VMP” column in-
dicates BinSim’s result without obfuscation. The last
two columns show the slice sizes of conventional dy-
namic slicing and BinSim. BinSim outperforms the con-
ventional approach by reducing slice sizes significantly.
Note that the sliced segment produced by BinSim con-
tains many different instructions with “No-VMP” ver-
sion. Directly comparing the syntax of instructions is
not feasible. Our semantics-based equivalence checking
can show that the new sliced segment is equivalent to the
original instructions.

Next, we evaluate BinSim’s cryptographic function
approximate matching, which allows equivalence check-
ing in the presence of cryptographic functions that could
otherwise be hard to analyze. We collect four Cryp-
toWall variants and apply BinSim to compare them pair
by pair. CryptoWall is a representative ransomware fam-
ily, and it is also continuously evolving. The similar

scores are shown in Table 5. We notice three samples
(a, b, and c) are quite similar, and one sample (Cryp-
toWall.d) has relatively large differences with the oth-
ers. After investigating BinSim’s output, we find out
that CryptoWall.d reveals three distinct behaviors: 1)
“query-then-infect”: it will terminate execution if the in-
fected machine’s UI languages are Russian, Ukrainian
or other former Soviet Union country languages (via
GetSystemDefaultUILanguage). This clearly shows
that the adversaries want to exclude certain areas from
attacking. 2) It uses AES for file encryption while the
other three variants choose RSA. 3) It encrypts files with
a new file name generation algorithm. Our “query-then-
infect” findings coincide with the recent CryptoWall re-
verse engineering report [2].

5.5 Analyzing Wild Malware Variants

We report our experience of applying BinSim and other
six binary diffing tools on 1,050 active malware samples
(uncontrolled dataset)5. The dataset is retrieved from
VirusShare6 and analyzed at February 2017. We lever-
age VirusTotal7 to do an initial clustering by majority
voting. The total 1,050 samples are grouped into 112
families, and more than 80% samples are protected by
different packers or virtualization obfuscation tools. For
each binary diffing tool, we perform intra-family pair-
wise comparison on our private cloud. The distribution
of similarity scores is shown in Table 6. Because Bin-
Diff, DarunGrim, and CoP cannot directly work on the
packed binary, we provide the unpacker binaries prepro-
cessed by BinSim’s generic unpacking.

In most cases, dynamic-only methods and BinSim are
able to find small distances among intra-family sam-
ples. For example, over 86% of the pairs have a sim-
ilarity score of 0.6 or greater. System call alignment
has a better distribution than BinSim during the simi-
larity score range 0.70 ∼ 1.00. We attribute the high
score to the fact that system call alignment cannot detect
conditional equivalence. Actually, we successfully iden-
tify that about 11% of malware samples have so-called
“query-then-infect” behaviors [77], and BinSim is able
to find whether two malware variants are conditionally
equivalent. In these cases, BinSim’s lower scores better
fit the ground truth. Figure 9 shows a conditional equiva-
lent behavior we find in Trojan-Spy.Win32.Zbot vari-
ants. Figure 10 presents a common compiler optimiza-
tion that converts a high-level branch condition into a
purely arithmetic sequence. This optimization can frus-
trate “block-centric” binary diffing methods, and we have

5The initial dataset is much larger, but we only consider the active
samples that we can collect system calls.

6http://virusshare.com/
7https://www.virustotal.com/

12

// modify registry key
1: RegOpenKeyEx();
2: RegSetValueEx();
3: RegCloseKey ();

(a) Zbot.a (b) Zbot.b

// modify registry key
1: GetLocalTime(&systime);
2: if (systime.Day < 20)
3: {
4: RegOpenKeyEx();
5: RegSetValueEx();
6: RegCloseKey ();
7: }

Figure 9: Conditional equivalent behaviors between
Trojan-Spy.Win32.Zbot variants.

1: neg reg
2: sbb reg, reg
3: and reg, (val1 - val2)
4: add reg, val2

(a) Branch logic (b) Equivalent branchless logic

if (reg)
reg = val1;

else
reg = val2;

Figure 10: Example: branchless logic code (reg stands
for a register; va1 and val2 are two inputs).

seen such cases repeatedly in our dataset. By contrast,
BinSim’s hybrid approach naturally identifies the im-
plicit control dependency in Figure 10 (b).

5.6 Performance

In Table 2, we also report the performance of BinSim
when analyzing the controlled dataset. The fourth col-
umn lists the runtime overhead imposed by our online
trace logging. On average, it incurs 8X slowdown, with
a peak value 12X when executing KeyLogger. The fifth
to seventh columns present the execution time of each
component in our offline analysis stage. The number
of instructions in the system call slice ranges from 5 to
138 and the average number is 22. The “STP” column
presents average time spent on querying STP when com-
paring two programs. Here we show the time before and
after the optimization of caching equivalence queries. On
average, the HashMap speeds up STP processing time
by a factor of 1.7. Considering that BinSim attempts to
automatically detect obfuscated binary code similarity,
which usually takes exhausting manual efforts from sev-
eral hours to days, this degree of slowdown is acceptable.
Performing the intra-family comparisons on 1,050 mal-
ware samples required approximately 3 CPU days.

6 Discussion

Like other malware dynamic analysis approaches, Bin-
Sim bears with the similar limitations: 1) incomplete
path coverage; 2) environment-sensitive malware [34,
35] which can detect sandbox environment. Therefore,

BinSim only detects the similarities/differences exhibit-
ing during execution. The possible solutions are to ex-
plore more paths by automatic input generation [26, 47]
and analyze malware in a transparent platform (e.g., VM-
Ray Analyzer [70]). Our current generic unpacking is
sufficient for our experiments. However, it can be de-
feated by more advanced packing methods such as mul-
tiple unpacking frames and parallel unpacking [68]. We
plan to extend BinSim to deal with the advanced pack-
ing methods. Recent work proposes “replacement at-
tacks” [44] to mutate system calls and their dependen-
cies. As a result, similar malware variants turn out to
have different behavior-based signatures. We regard this
“replacement attacks” as a potential threat because it can
reduce BinSim’s similarity score. One possible solution
is to design a layered architecture to capture alternative
events that achieve the same high-level functionality.

BinSim’s enhanced slicing algorithm handles the ob-
fuscations that could break the block-centric binary com-
parisons. We have evaluated BinSim against a set of so-
phisticated commercial obfuscation tools and advanced
academic obfuscation methods. However, determined
adversaries may carefully add plenty of redundant de-
pendencies to cause slice size explosion, and the result-
ing weakest preconditions could become too complicated
to be solved. As an extreme case, the dependencies of
a system call argument can be propagated to the entire
program. To achieve this, it requires that future attack-
ers have much deeper understanding about program anal-
ysis (e.g., inter-procedure data/control follow analysis)
and take great engineering efforts. An attacker can also
customize an unknown cryptographic algorithm to evade
our cryptographic function approximate matching. How-
ever, correctly implementing a cryptographic algorithm
is not a trivial task, and most cryptographic functions
are reused from open cryptographic libraries, such as
OpenSSL and Microsoft Cryptography API [75]. There-
fore, BinSim raises the attacking bar significantly com-
pared to existing techniques. On the other side, design-
ing a worst case evaluation metric needs considerable in-
sights into malicious software industry [39]. We leave it
as our future work.

7 Related Work

7.1 Dynamic Slicing and Weakest Precon-
dition Calculation

As dynamic slicing techniques [1, 80] can substantially
reduce the massive program statements under investiga-
tion to a most relevant subset, they have been widely
applied to the domain of program analysis and verifica-
tion. Differential Slicing [29] produces a causal differ-
ence graph that captures the input differences leading to

13

Table 6: Similarity score distribution (%) of intra-family comparisons.

Score range BinDiff DarunGrim iBinHunt CoP Syscall alignment Feature set BinSim
0.00–0.10 1 1 1 1 1 1 1
0.10–0.20 3 2 1 3 1 1 1
0.20–0.30 3 4 2 4 1 2 1
0.30–0.40 13 14 3 10 1 3 1
0.40–0.50 18 17 5 18 2 3 2
0.50–0.60 14 16 18 13 3 4 4
0.60–0.70 17 13 17 14 6 16 11
0.70–0.80 13 15 20 16 26 27 24
0.80–0.90 9 10 15 11 21 16 19
0.90–1.00 9 8 18 10 38 27 36

the execution differences. Weakest precondition (WP)
calculation is firstly explored by Dijkstra [20] for formal
program verification. Brumley et al. [8] compare WP to
identify deviations in different binary implementations
for the purpose of error detection and fingerprint genera-
tion. Ansuman et al. [4] calculate WP along the dynamic
slicing to diagnose the root of an observable program er-
ror. BinSim’s dynamic slicing and WP calculation are
inspired by Ansuman et al.’s work. However, we cus-
tomize our dynamic slicing algorithm to operate at the
obfuscated binaries, which is more tricky than working
on source code or benign programs. Another difference
is we perform equivalence checking for WP while they
do implication checking.

The most related backward slicing method to BinSim
is Coogan et al.’s work [19]. We both attempt to identify
the relevant instructions that affect system call arguments
in an obfuscated execution trace, and the idea of value
based slicing and tracking control dependency is similar.
However, BinSim is different from Coogan et al.’s work
in a number of ways. First, Coogan et al.’s approach is
designed only for virtualization obfuscation. To evaluate
the accuracy of backward slicing, they compare the x86
instruction slicing pairs by the syntax of the opcode (e.g.,
mov, add, and lea). It is quite easy to generate a syntac-
tically different trace through instruction-level obfusca-
tion [51]. Furthermore, the commercial virtualization ob-
fuscators [52, 69] have already integrated code mutation
functionality. Therefore, Coogan et al.’s approach has
less resilience to other obfuscation methods. Second, we
utilize taint analysis to identify virtualization bytecode
dispatcher while Coogan et al. apply different heuristics.
Third, Coogan et al. do not handle cryptographic func-
tions. They state that the encryption/decryption routine
could cripple their analysis. Fourth, Coogan et al. eval-
uate their method on only six tiny programs; while Bin-
Sim goes through an extensive evaluation. Last, but not
the least, after the sub-traces or sliced segments are con-
structed, Coogan et al. compare them syntactically while
BinSim uses weakest precondition to compare them se-
mantically.

7.2 Binary Diffing

Hunting binary code difference have been widely ap-
plied in software security. BinDiff [23] and Darun-
Grim [50] compare two functions via the maximal con-
trol flow subgraph isomorphism and match the similar
basic blocks with heuristics. BinSlayer [7] improves
BinDiff by matching bipartite graphs. dicovRE [22] ex-
tracts a set of syntactical features to speed up control
flow subgraph isomorphism. These approaches gear to-
ward fast matching similar binary patches, but they are
brittle to defeat the sophisticated obfuscation methods.
Another line of work captures semantic equivalence be-
tween executables. BinHunt [25] first leverages symbolic
execution and theorem proving to match the basic blocks
with the same semantics. BinJuice [37] extracts the se-
mantic abstraction for basic blocks. Exposé [49] com-
bines function-level syntactic heuristics with semantics
detection. iBinHunt [43] is an inter-procedural path diff-
ing tool and relies on multi-tag taint analysis to reduce
possible basic block matches. Pewny et al. [54] adopt
basic block semantic representation sampling to search
cross-architecture bugs. As we have demonstrated, these
tools suffer from the so called “block-centric” limita-
tion. In contrast, BinSim can find equivalent instruc-
tion sequences across the basic block boundary. Egele
et al. [21] proposed blanket execution to match similar
functions in binaries using dynamic testing. However,
blanket execution requires a precise function scope iden-
tification, which is not always feasible for obfuscated bi-
nary code [42].

7.3 Malware Dynamic Analysis

Malware dynamic analysis techniques are characterized
by analyzing the effects that the program brings to the
operating system. Compared with static analysis, dy-
namic analysis is less vulnerable to various code ob-
fuscation methods [48]. Christodorescu et al. [14] pro-
posed to use data-flow dependencies among system calls
as malware specifications, which are hard to be circum-

14

vented by random system calls injection. Since then,
there has been a significant amount of work on dynamic
malware analysis, e.g., malware clustering [6, 28] and
detection [3, 12]. However, dynamic-only approaches
may disregard the conditional equivalence or the sub-
tle differences that do not affect system call arguments.
Therefore, BinSim’s hybrid approach is much more ac-
curate. In addition, dynamic slicing is also actively
employed by various malware analysis tasks. The no-
table examples include an efficient malware behavior-
based detection that executes the extracted slice to match
malicious behavior [36], extracting kernel malware be-
havior [38], generating vaccines for malware immuniza-
tion [76], and identifying malware dormant functional-
ity [18]. However, all these malware analysis tasks adopt
the standard dynamic slicing algorithms [1, 80], which
are not designed for tracking the data and control depen-
dencies in a highly obfuscated binary, e.g., virtualization-
obfuscated malware. As we have demonstrated in Sec-
tion 4.2, performing dynamic slicing on an obfuscated
binary is challenging. Therefore, our method is benefi-
cial and complementary to existing malware defense.

8 Conclusion

We present a hybrid method combining dynamic analysis
and symbolic execution to compare two binary execution
traces for the purpose of detecting their fine-grained re-
lations. We propose a new concept called System Call
Sliced Segments and rely on their Equivalence Checking
to detect fine-grained semantics similarity. By integrat-
ing system call alignment, enhanced dynamic slicing,
symbolic execution, and theorem proving, our method
compares the semantics of instruction segments that im-
pact on the observable behaviors. Compared to existing
semantics-based binary diffing methods, our approach
can capture the similarities, or differences, across ba-
sic blocks and infer whether two programs’ behaviors
are conditionally equivalent. Our comparative evalua-
tion demonstrates BinSim is a compelling complement
to software security analysis tasks.

9 Acknowledgments

We thank the Usenix Security anonymous reviewers and
Michael Bailey for their valuable feedback. This re-
search was supported in part by the National Science
Foundation (NSF) under grants CCF-1320605 and CNS-
1652790, and the Office of Naval Research (ONR) under
grants N00014-16-1-2265 and N00014-16-1-2912. Jiang
Ming was also supported by the University of Texas Sys-
tem STARs Program.

References
[1] AGRAWAL, H., AND HORGAN, J. R. Dynamic program slicing.

ACM SIGPLAN Notices 25, 6 (1990), 246–256.

[2] ALLIEVI, A., UNTERBRINK, H., AND MERCER, W. Cryp-
toWall 4 - the evolution continues. Cisco White Paper, 2016 May.

[3] BABIĆ, D., REYNAUD, D., AND SONG, D. Malware analysis
with tree automata inference. In Proceedings of the 23rd Int.
Conference on Computer Aided Verification (CAV’11) (2011).

[4] BANERJEE, A., ROYCHOUDHURY, A., HARLIE, J. A., AND
LIANG, Z. Golden implementation driven software debugging.
In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE’10)
(2010).

[5] BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUM-
LEY, D. ByteWeight: Learning to recognize functions in binary
code. In Proceedings of the 23rd USENIX Conference on Security
Symposium (2014).

[6] BAYER, U., COMPARETTI, P. M., HLAUSCHEK, C., KRUEGEL,
C., AND KIRDA, E. Scalable, behavior based malware cluster-
ing. In Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS’09) (2009).

[7] BOURQUIN, M., KING, A., AND ROBBINS, E. BinSlayer: Ac-
curate comparison of binary executables. In Proceedings of the
2nd ACM SIGPLAN Program Protection and Reverse Engineer-
ing Workshop (PPREW ’13) (2013).

[8] BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME, J.,
AND SONG, D. Towards automatic discovery of deviations in
binary implementations with applications to error detection and
fingerprint generation. In Proceedings of the 16th USENIX Secu-
rity Symposium (2007).

[9] BRUMLEY, D., POOSANKAM, P., SONG, D., AND ZHENG,
J. Automatic patch-based exploit generation is possible: Tech-
niques and implications. In Proceedings of the 2008 IEEE Sym-
posimu on Security and Privacy (S&P’08) (2008).

[10] CABALLERO, J., MCCAMANT, S., BARTH, A., AND SONG, D.
Extracting models of security-sensitive operations using string-
enhanced white-box exploration on binaries. Tech. rep., EECS
Department, University of California, Berkeley, March 2009.

[11] CABALLERO, J., POOSANKAM, P., MCCAMANT, S., BABI Ć,
D., AND SONG, D. Input generation via decomposition and
re-stitching: Finding bugs in malware. In Proceedings of the
17th ACM Conference on Computer and Communications Secu-
rity (CCS’10) (2010).

[12] CANALI, D., LANZI, A., BALZAROTTI, D., KRUEGEL, C.,
CHRISTODORESCU, M., AND KIRDA, E. A quantitative study
of accuracy in system call-based malware detection. In Proceed-
ings of the 2012 International Symposium on Software Testing
and Analysis (ISSTA’12) (2012).

[13] CHANDRAMOHAN, M., XUE, Y., XU, Z., LIU, Y., CHO, C. Y.,
AND KUAN, T. H. B. BinGo: Cross-architecture cross-os bi-
nary search. In Proceedings of the 2016 ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engineering
(FSE’16) (2016).

[14] CHRISTODORESCU, M., JHA, S., AND KRUEGEL, C. Mining
specifications of malicious behavior. In Proceedings of the the
6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on the foundations of
software engineering (2007).

[15] CHRISTODORESCU, M., JHA, S., SESHIA, S. A., SONG, D.,
AND BRYANT, R. E. Semantics-aware malware detection. In
Proceedings of the 2005 IEEE Symposium on Security and Pri-
vacy (S&P’05) (2005).

15

[16] COLLBERG, C. The tigress c diversifier/obfuscator. http://

tigress.cs.arizona.edu/, last reviewed, 02/16/2017.

[17] COLLBERG, C., THOMBORSON, C., AND LOW, D. A taxon-
omy of obfuscating transformations. Tech. rep., The University
of Auckland, 1997.

[18] COMPARETTI, P. M., SALVANESCHI, G., KIRDA, E., KOL-
BITSCH, C., KRUEGEL, C., AND ZANERO, S. Identifying dor-
mant functionality in malware programs. In Proceedings of the
2010 IEEE Symposium on Security and Privacy (S&P’10) (2010).

[19] COOGAN, K., LU, G., AND DEBRAY, S. Deobfuscation of
virtualization-obfuscated software. In Proceedings of the 18th
ACM Conference on Computer and Communications Security
(CCS’11) (2011).

[20] DIJKSTRA, E. W. A Discipline of Programming, 1st ed. Prentice
Hall PTR, 1997.

[21] EGELE, M., WOO, M., CHAPMAN, P., AND BRUMLEY, D.
Blanket Execution: Dynamic similarity testing for program bi-
naries and components. In 23rd USENIX Security Symposium
(USENIX Security’14) (2014).

[22] ESCHWEILER, S., YAKDAN, K., AND GERHARDS-PADILLA,
E. discovRE: Efficient cross-architecture identification of bugs
in binary code. In Proceedings of the 23nd Annual Network and
Distributed System Security Symposium (NDSS’16) (2016).

[23] FLAKE, H. Structural comparison of executable objects. In
Proceedings of the 2004 GI International Conference on De-
tection of Intrusions & Malware, and Vulnerability Assessment
(DIMVA’04) (2004).

[24] GANESH, V., AND DILL, D. L. A decision procedure for bit-
vectors and arrays. In Proceedings of the 2007 International Con-
ference in Computer Aided Verification (CAV’07) (2007).

[25] GAO, D., REITER, M. K., AND SONG, D. BinHunt: Auto-
matically finding semantic differences in binary programs. In
Poceedings of the 10th International Conference on Information
and Communications Security (ICICS’08) (2008).

[26] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Auto-
mated whitebox fuzz testing. In Proceedings of the 15th Annual
Network and Distributed System Security Symposium (NDSS’08)
(2008).

[27] GRÖBERT, F., WILLEMS, C., AND HOLZ, T. Automated iden-
tification of cryptographic primitives in binary programs. In
Proceedings of the 14th International Conference on Recent Ad-
vances in Intrusion Detection (RAID’11) (2011).

[28] JANG, J., BRUMLEY, D., AND VENKATARAMAN, S. BitShred:
feature hashing malware for scalable triage and semantic analy-
sis. In Proceedings of the 18th ACM conference on Computer and
communications security (CCS’11) (2011).

[29] JOHNSON, N. M., CABALLERO, J., CHEN, K. Z., MCCA-
MANT, S., POOSANKAM, P., REYNAUD, D., AND SONG, D.
Differential Slicing: Identifying causal execution differences for
security applications. In Proceedings of the 2011 IEEE Sympo-
sium on Security and Privacy (S&P’11) (2011).

[30] KANG, M. G., POOSANKAM, P., AND YIN, H. Renovo: A
hidden code extractor for packed executables. In Proceedings
of the 2007 ACM Workshop on Recurring Malcode (WORM ’07)
(2007).

[31] KAWAGUCHI, M., LAHIRI, S. K., AND REBELO, H. Condi-
tional Equivalence. Tech. Rep. MSR-TR-2010-119, Microsoft
Research, 2010.

[32] KHARRAZ, A., ARSHAD, S., MULLINER, C., ROBERTSON,
W. K., AND KIRDA, E. UNVEIL: A large-scale, automated
approach to detecting ransomware. In Proceedings of the 25th
USENIX Conference on Security Symposium (2016).

[33] KHARRAZ, A., ROBERTSON, W., BALZAROTTI, D., BILGE,
L., AND KIRDA, E. Cutting the Gordian Knot: A Look Under
the Hood of Ransomware Attacks. In Proceedings of the 12th In-
ternational Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA’15) (2015).

[34] KIRAT, D., AND VIGNA, G. MalGene: Automatic extraction of
malware analysis evasion signature. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Se-
curity (CCS’15) (2015).

[35] KIRAT, D., VIGNA, G., AND KRUEGEL, C. BareCloud: Bare-
metal analysis-based evasive malware detection. In Proceedings
of the 23rd USENIX Conference on Security Symposium (2014).

[36] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA,
E., ZHOU, X., AND WANG, X. Effective and efficient malware
detection at the end host. In Proceedings of the 18th USENIX
Security Symposium (2009).

[37] LAKHOTIA, A., PREDA, M. D., AND GIACOBAZZI, R. Fast lo-
cation of similar code fragments using semantic ’juice’. In Pro-
ceedings of the 2nd ACM SIGPLAN Program Protection and Re-
verse Engineering Workshop (PPREW’13) (2013).

[38] LANZI, A., SHARIF, M., AND LEE, W. K-Tracer: A system
for extracting kernel malware behavior. In Proceedings of the
16th Annual Network and Distributed System Security Sympo-
sium (NDSS09) (2009).

[39] LINDORFER, M., DI FEDERICO, A., MAGGI, F., COM-
PARETTI, P. M., AND ZANERO, S. Lines of malicious code:
Insights into the malicious software industry. In Proceedings
of the 28th Annual Computer Security Applications Conference
(ACSAC’12) (2012).

[40] LU, K., ZOU, D., WEN, W., AND GAO, D. deRop: Remov-
ing return-oriented programming from malware. In Proceedings
of the 27th Annual Computer Security Applications Conference
(ACSAC’11) (2011).

[41] LUO, L., MING, J., WU, D., LIU, P., AND ZHU, S. Semantics-
based obfuscation-resilient binary code similarity comparison
with applications to software plagiarism detection. In Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’14) (2014).

[42] MENG, X., AND MILLER, B. P. Binary code is not easy. In Pro-
ceedings of the 25th International Symposium on Software Test-
ing and Analysis (ISSTA’16) (2016).

[43] MING, J., PAN, M., AND GAO, D. iBinHunt: Binary hunting
with inter-procedural control flow. In Proceedings of the 15th An-
nual International Conference on Information Security and Cryp-
tology (ICISC’12) (2012).

[44] MING, J., XIN, Z., LAN, P., WU, D., LIU, P., AND MAO,
B. Replacement Attacks: Automatically impeding behavior-
based malware specifications. In Proceedings of the 13th Inter-
national Conference on Applied Cryptography and Network Se-
curity (ACNS’15) (2015).

[45] MING, J., XU, D., WANG, L., AND WU, D. LOOP: Logic-
oriented opaque predicates detection in obfuscated binary code.
In Proceedings of the 22nd ACM Conference on Computer and
Communications Securit (CCS’15) (2015).

[46] MING, J., XU, D., AND WU, D. Memoized semantics-based
binary diffing with application to malware lineage inference. In
Proceedings of the 30th International Conference on ICT Systems
Security and Privacy Protection (IFIP SEC’15) (2015).

[47] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring multiple
execution paths for malware analysis. In Proceedings of the 2007
IEEE Symposium of Security and Privacy (S&P’07) (2007).

16

[48] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of static
analysis for malware detection. In Proceedings of the 23th An-
nual Computer Security Applications Conference (ACSAC’07)
(December 2007).

[49] NG, B. H., AND PRAKASH, A. Exposé: Discovering poten-
tial binary code re-use. In Proceedings of the 37th IEEE An-
nual Computer Software and Applications Conference (COMP-
SAC’13) (2013).

[50] OH, J. W. Fight against 1-day exploits: Diffing binaries vs anti-
diffing binaries. Black Hat USA 2009, 2009.

[51] OKANE, P., SEZER, S., AND MCLAUGHLIN, K. Obfuscation:
The hidden malware. IEEE Security and Privacy 9, 5 (2011).

[52] OREANS TECHNOLOGIES. Code Virtualizer: Total obfus-
cation against reverse engineering. http://oreans.com/

codevirtualizer.php, last reviewed, 02/16/2017.

[53] PANDA SECURITY. 227,000 malware samples per day in
Q1 2016. http://www.pandasecurity.com/mediacenter/
pandalabs/pandalabs-study-q1/.

[54] PEWNY, J., GARMANY, B., GAWLIK, R., ROSSOW, C., AND
HOLZ, T. Cross-architecture bug search in binary executables.
In Proceedings of the 36th IEEE Symposium on Security and Pri-
vacy (S&P’15) (2015).

[55] POULIOS, G., NTANTOGIAN, C., AND XENAKIS, C. ROPInjec-
tor: Using return oriented programming for polymorphism and
antivirus evasion. Black Hat USA 2015, 2015.

[56] RAMOS, D. A., AND ENGLER, D. R. Practical, low-effort equiv-
alence verification of real code. In Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (CAV’11)
(2011).

[57] ROUNDY, K. A., AND MILLER, B. P. Binary-code obfuscations
in prevalent packer tools. ACM Computing Surveys 46, 1 (2013).

[58] SCAIFE, N., CARTER, H., TRAYNOR, P., AND BUTLER, K. R.
CryptoLock (and Drop It): Stopping ransomware attacks on user
data. In Proceedings of the 36th IEEE International Conference
on Distributed Computing Systems (ICDCS’16) (2016).

[59] SCHRITTWIESER, S., KATZENBEISSER, S., KIESEBERG, P.,
HUBER, M., LEITHNER, M., MULAZZANI, M., AND WEIPPL,
E. Covert Computation: Hiding code in code for obfuscation
purposes. In Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security (ASI-
ACCS’13) (2013).

[60] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceed-
ings of the 14th ACM Conference on Computer and Communica-
tions Security (CCS’07) (2007).

[61] SHARIF, M., LANZI, A., GIFFIN, J., AND LEE, W. Automatic
reverse engineering of malware emulators. In Proceedings of the
2009 IEEE Symposium on Security and Privacy (S&P’09) (2009).

[62] SHI, Y., GREGG, D., BEATTY, A., AND ERTL, M. A. Virtual
machine showdown: Stack versus registers. In Proceedings of the
1st ACM/USENIX International Conference on Virtual Execution
Environments (VEE’05) (2005).

[63] SIKORSKI, M., AND HONIG, A. Counterfeiting the Pipes with
FakeNet 2.0. BlackHat EUROPE 2014, 2014.

[64] SMITH, J., AND NAIR, R. Virtual Machines: Versatile Plat-
forms for Systems and Processes (The Morgan Kaufmann Series
in Computer Architecture and Design). Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2005.

[65] SMITH, T. F., AND WATERMAN, M. Identification of common
molecular subsequences. Journal of Molecular Biology 147, 1
(1981).

[66] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER,
I., KANG, M. G., LIANG, Z., NEWSOME, J., POOSANKAM, P.,
AND SAXENA, P. BitBlaze: A new approach to computer secu-
rity via binary analysis. In Proceedings of the 4th International
Conference on Information Systems Security (ICISS’08) (2008).

[67] SOOS, M., NOHL, K., AND CASTELLUCCIA, C. Extending SAT
solvers to cryptographic problems. In Proceedings of the 12th
International Conference on Theory and Applications of Satisfia-
bility Testing (SAT’09) (2009).

[68] UGARTE-PEDRERO, X., BALZAROTTI, D., SANTOS, I., AND
BRINGAS, P. G. SoK: Deep packer inspection: A longitudinal
study of the complexity of run-time packers. In Proceedings of
the 36th IEEE Symposium on Security & Privacy (2015).

[69] VMPROTECT SOFTWARE. VMProtect software protection.
http://vmpsoft.com, last reviewed, 02/16/2017.

[70] VMRAY. VMRay Analyzer. https://www.vmray.com/, last
reviewed, 02/16/2017.

[71] WANG, C., HILL, J., KNIGHT, J. C., AND DAVIDSON, J. W.
Protection of software-based survivability mechanisms. In Pro-
ceedings of the 2001 International Conference on Dependable
Systems and Networks (2001).

[72] WANG, T., WEI, T., GU, G., AND ZOU, W. Checksum-aware
fuzzing combined with dynamic taint analysis and symbolic ex-
ecution. ACM Transactions on Information and System Security
(TISSEC) 14, 15 (September 2011).

[73] WANG, X., JHI, Y.-C., ZHU, S., AND LIU, P. Behavior based
software theft detection. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security (CCS’09)
(2009).

[74] WARREN, H. S. Hacker’s Delight. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[75] XU, D., MING, J., AND WU, D. Cryptographic function de-
tection in obfuscated binaries via bit-precise symbolic loop map-
ping. In Proceedings of the 38th IEEE Symposium on Security
and Privacy (S&P’17) (2017).

[76] XU, Z., ZHANG, J., GU, G., AND LIN, Z. AUTOVAC: Au-
tomatically extracting system resource constraints and generat-
ing vaccines for malware immunization. In Proceedings of the
33rd International Conference on Distributed Computing Sys-
tems (ICDCS’13) (2013).

[77] XU, Z., ZHANG, J., GU, G., AND LIN, Z. GoldenEye: Effi-
ciently and effectively unveiling malwares targeted environment.
In Proceedings of the 17th International Symposium on Research
in Attacks Intrusions and Defenses (RAID’14) (2014).

[78] YADEGARI, B., AND DEBRAY, S. Symbolic execution of obfus-
cated code. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS’15) (2015).

[79] YADEGARI, B., JOHANNESMEYER, B., WHITELY, B., AND
DEBRAY, S. A generic approach to automatic deobfuscation of
executable code. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (S&P’15) (2015).

[80] ZHANG, X., GUPTA, R., AND ZHANG, Y. Precise dynamic slic-
ing algorithms. In Proceedings of the 25th International Confer-
ence on Software Engineering (ICSE’03) (2003).

17

Appendix

Table 7: Examples: critical system calls/Windows API.

Object Critical system calls/Windows API

File NtCreateFile, NtOpenFile, NtClose

NtQueryDirectoryFile, NtSetInformationFile

Registry NtCreateKey, NtOpenKey, NtSaveKey

Memory NtAllocateVirtualMemory, NtMapViewOfSection

NtWriteVirtualMemory

Process NtCreateProcess, NtOpenProcess , NtTerminateProcess

Thread NtCreateThread, NtResumeThread, NtTerminateThread

Network connect, bind, send, recv, gethostname

Desktop CreateDesktop, SwitchDesktop, SetThreadDesktop

Other LoadLibrary, GetProcAddress, GetModuleHandle

Table 8: Instructions with implicit branch logic.

Instructions Meaning

CMOVcc Conditional move

SETcc Set operand to 1 on condition, or 0 otherwise

CMPXCHG Compare and then swap

REP-prefixed Repeated operations, the upper limit is stored in ecx

JECXZ Jump if ecx register is 0

LOOP Performs a loop operation using ecx as a counter

 mov eax, [ebp+8]
 mov edx, eax
 and edx, 55555555h
 mov eax, [ebp+8]
 shr eax, 1
 and eax, 55555555h
 add eax, edx
 mov [ebp+8], eax
 mov eax, [ebp+8]
 mov edx, eax
 and edx, 33333333h
 mov eax, [ebp+8]
 shr eax, 2
 and eax, 33333333h
 add eax, edx
 mov [ebp+8], eax
 mov eax, [ebp+8]
 mov edx, eax
 and edx, 0F0F0F0Fh
 mov eax, [ebp+8]
 shr eax, 4
 and eax, 0F0F0F0Fh
 add eax, edx
 mov [ebp+8], eax
 mov eax, [ebp+8]
 mov edx, eax
 and edx, 0FF00FFh
 mov eax, [ebp+8]
 shr eax, 8
 and eax, 0FF00FFh
 add eax, edx
 mov [ebp+8], eax
 mov eax, [ebp+8]
 movzx edx, ax
 mov eax, [ebp+8]
 shr eax, 10h
 add eax, edx
 mov [ebp+8], eax

 cmp [ebp+8], 0
 jnz loc_800004D

 loc_800004D:
 mov eax, [ebp+8]
 sub eax, 1
 and [ebp+8], eax
 add [ebp-0xC], 1

 printf (\d ,count)

(b)

 cmp [ebp+8], 0
 jnz loc_8000016

 loc_8000016:
 mov eax, [ebp+8]
 and eax, 1
 add [ebp-0xC], eax
 shr [ebp+8], 1

 printf (\d ,count)

(a)

(c)

 printf (\d ,n)

Figure 11: The disassembly code of three BitCount al-

gorithms shown in Figure 3. The grey basic blocks rep-

resent the main loop bodies, which are not matched by

“block-centric” binary diffing tools.

1 int isPowerOfTwo 1 (unsigned int x)
2 {
3 /∗ While x is even and > 1 ∗/
4 while (((x % 2) == 0) && x > 1)
5 x /= 2;
6 return (x == 1);
7 }
8
9 int isPowerOfTwo 2 (unsigned int x)

10 {
11 unsigned int numberOfOneBits = 0;
12 while(x && numberOfOneBits <=1)
13 {
14 /∗ Is the least significant bit a 1? ∗/
15 if ((x & 1) == 1)
16 numberOfOneBits++;
17 /∗ Shift number one bit to the right ∗/
18 x >>= 1;
19 }
20 return (numberOfOneBits == 1);
21 }

Figure 12: Two different isPowerOfTwo algorithms

check if an unsigned integer is a power of 2.

1 unsigned flp2 1 (unsigned x){
2 x=x|(x>>1);
3 x=x|(x>>2);
4 x=x|(x>>4);
5 x=x|(x>>8);
6 x=x|(x>>16);
7 return x−(x>>1);
8 }
9

10 unsigned flp2 2 (unsigned x){
11 unsigned y=0x80000000;
12 while(y>x){
13 y=y>>1;
14 }
15 return y;
16 }
17
18 unsigned flp2 3 (unsigned x){
19 unsigned y;
20 do{
21 y=x;
22 x=x&(x−1);
23 }while(x!=0);
24 return y;
25 }

Figure 13: Three different flp2 algorithms find the

largest number that is power of 2 and less than an given

integer x.

18

