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Abstract

Data structure signatures can be used for finding instances of data structures holding sensitive data in memory, a crucial
capability for many security applications such as memory forensics, rootkit detection, online games cheat analysis, reverse
engineering, and virtual machine introspection. Manually generating data structure signatures is a tedious and error-prone
process. Prior work automatically generates data structure signatures from the type definitions in the program’s source code,
but unfortunately for many programs their source code is not publicly available.

In this paper we present ARTISTE, the first tool for automatically generating data structure signatures without access to
the program’s source code or debugging symbols. The salient features of ARTISTE are: (1) it generates hybrid signatures that
minimize false positives during scanning by combining points-to relationships, value invariants, and cycle invariants; (2) it
uses a novel dynamic shape analysis to recover recursive data structures, classifying them by their shapes (e.g., doubly linked-
list or tree); (3) it identifies data structures of the same type allocated at different program points; and (4) it accumulates data
structure information over multiple executions, increasingly improving its accuracy. Our experimental results on a number
of binary programs show that the hybrid signatures generated by ARTISTE accurately identify instances of the data structures
in memory with no false positives or false negatives in 80% of the programs, while prior signature types produce large false
positive rates.
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1 Introduction
Data structures are central to programs because they store
and organize the program’s data. Some data structures are
of special importance because they store sensitive data, such
as the running processes in OS kernels, unit and resource
information in online games, and credentials and contact in-
formation in Instant Messengers (IM). Locating instances of
these sensitive data structures in memory is crucial for many
security applications such as memory forensics [31, 32],
rootkit detection [10, 15], online games cheat analysis [5],
reverse engineering [28, 33, 50], and virtual machine intro-
spection [19].

One approach for locating instances of data structures in
memory is scanning using data structure signatures [4, 49,
51], which are either manually generated [30], a tedious and
error-prone process, or automatically generated from the def-
initions in the program’s source code [2, 15, 31, 32, 41]. Un-
fortunately, for many programs their source code (and de-
bugging symbols) are not publicly available.

Another approach is to build a path signature that captures
the pointer traversals needed to reach an instance of a data
structure from a global variable [10]. However, this approach
is fragile as any unresolved points-to information cuts the
path, missing the data structure instance.

Thus, it is pressing to automatically generate data struc-
ture signatures without the program’s source code or debug-
ging symbols. Prior work has proposed to recover data struc-
ture information from low level data such as memory snap-
shots [12] or program binary code [28, 33, 50]. But, those
approaches only address a subset of the process required to
generate data structure signatures. For example, sensitive
data is often stored in recursive data structures (RDS) such as
lists and trees (e.g., the Windows Vista SP1 kernel uses over
1,500 doubly linked list types to store critical OS informa-
tion [10]). However, none of the above approaches recover
RDS, or automatically generate data structure signatures.

In fact, recovering high level data structures such as RDS
from low level data is a challenging process. State-of-the-art
approaches only partially address this problem. In particular,
TIE [28] only infers primitive types (e.g., pointer, integer) for
the program’s variables. REWARDS [33] and HOWARD [50]
excavate data structures, but do not identify data structures
of the same type and do not identify RDS. LAIKA [12] iden-
tifies data structures in a memory snapshot and groups those
of the same type, but it does not identify fields inside data
structures, does not classify the type of RDS, and more im-
portantly cannot generalize information from one snapshot
to another.

In this paper we present ARTISTE, the first tool for
Automatically geneRaTIng data S tructure signaTurEs
without access to the program’s source code or debugging
symbols. ARTISTE uses dynamic analysis to recover the data
structures used by the program in a number of executions,
and builds signatures to locate them in memory.

The salient features of ARTISTE are that it automatically:

(1) generates hybrid signatures that capture points-to rela-
tionships among data structures, value invariants (e.g., con-
stant value or value range), and cycle invariants (e.g., cycles
between data structure instances), significantly minimizing
false positives during scanning, whereas prior approaches
use exclusively value invariants (e.g., [15]), just points-to re-
lationships (e.g, [31,32]), or only cycle invariants (e.g., [30]);
(2) identifies recursive data structures, classifying them by
their shapes (e.g., doubly linked-list or tree); (3) merges data
structures of the same type allocated at different program
points, producing a closer approximation of the source-level
types; and (4) accumulates data structure information over
multiple executions, increasingly improving its accuracy.

We have implemented ARTISTE, and evaluated it on 5
Windows programs. The results show that the generated hy-
brid signatures produce no false positives and no false neg-
atives for 4 of the 5 programs. For those 4 programs, value
invariant only and points-to only signatures produce a large
number of false positives, demonstrating the need for hybrid
signatures that combine as much discriminating information
as possible. For the remaining program, our signature per-
forms no worse than a manually generated signature, show-
ing that some data structures signatures are challenging to
build even when source code, debugging symbols, and pro-
filing information are available.
This paper makes the following contributions:

• We present the first approach for automatically gener-
ating data structure signatures without the program’s
source code or debugging symbols (§2). Our approach
generates hybrid signatures that minimize false posi-
tives during scanning by combining points-to relation-
ships, value invariants, and cycle invariants (§6).

• We design two online primitive type inference algo-
rithms (§3) and show that they are faster and more ac-
curate than an online version of REWARDS.

• We propose a technique for identifying data structures
of the same type allocated at different program points
(§4) by leveraging pointer target type, structure, and
profiling information.

• We present a novel dynamic shape analysis (§5) for
identifying recursive data structures and classifying
them into useful shapes such as lists or trees.

• We design and implement ARTISTE, a data structure
recovery and signature generation tool that works di-
rectly on program binaries and applies to Windows pro-
grams. We evaluate ARTISTE on 5 representative binary
programs showing that its hybrid signatures outperform
prior approaches (§7).

2 Overview
In this paper a data structure is a composite type (e.g., a
record) defined in the program’s source code and a recursive
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Root: callsite_0x0100a7d2
000 012 struct(callsite_0x0100a7d2)
000 004 num32 FIELD.IN-RANGE.[0,53]
004 004 ptr32((struct(callsite_0x0100a7d2))) (DLL,F)
008 004 ptr32((struct(callsite_0x0100a7d2))) (DLL,B)

Figure 1: Example signature. Each line corresponds to a
node in the tree, with the field offset, the field length, the
field type, and the field’s invariants.

data structure is a data structure that contains at least one
recursive pointer. A recursive data structure typically forms
a shape such as a doubly-linked-list (DLL) or a tree.

A data structure signature captures information on a root
data structure to be located in memory, as well as all data
structures reachable by transitively following pointers from
the root. Each data structure in a signature is summarized by
a format tree that captures its layout (i.e., which fields exist
at which offsets), the type of each field (e.g., pointer, integer
array), and which other data structures or variables it points
to (i.e., the target type of its pointers fields). The format tree
may differ from the data structure definition as it captures the
layout produced by the compiler, which may store an integer
or pointer using 4 or 8 bytes depending on the architecture,
add new fields (e.g., a vtable pointer in C++ objects), align
fields with padding, and inline the layout of a parent class
into a child class.

A hybrid signature is a data structure signature that anno-
tates the fields in the format trees with value-invariants (e.g.,
a field has constant value or is always non-zero) and recur-
sive pointers with the shape they form.

The shape information is added because some shapes have
implicit cycle invariants. A cycle invariant describes a cy-
cle in memory, i.e., a sequence of pointer traversals that
start and end at the same object. For example, in a DLL
self→forward→back=self. Cycle invariants have large dis-
criminating power but are difficult to find because they are
not visible in the source code and a cycle in the heap may
not always hold, so prior work identifies them manually [30].
On the other hand, ARTISTE automatically identifies cycle
invariants that are implicit in some of the recovered shapes.

Figure 1 shows the signature produced by ARTISTE for
the lists of cards in the Spider game shipped with Windows.
This signature contains only a single root tree. Each line
corresponds to a field with its offset, length, type, and in-
variants. There are 3 fields: the card identifier at offset zero
which the analysis infers as a 32-bit number in the range
[0,53] (52 cards plus two special cards), and two recursive
pointers at offsets 4 and 8 corresponding to the forward and
back pointers of a DLL. Figure 2c depicts the corresponding
format tree. Each node represents a field in the data structure
with its range and type. The type of a node can be structure,
primitive, array, and dynamic array (a variable-length array
such as a string or a vector container).

Figure 2: Merging two compatible buffer trees into a call-
site tree produces a more refined representation of the data
structure allocated at the callsite.

2.1 Approach Overview

ARTISTE uses dynamic analysis, accumulating the (partial)
information recovered over a number of program executions.
It uses 3 classes of format trees at different stages of the re-
covery process: buffer trees, callsite trees, and type trees.
For each execution, ARTISTE constructs a buffer tree for
every heap allocation, loaded module, and function stack
frame. Once all executions have been analyzed, it merges
the buffer trees from buffers of the same type from all runs.

To identify the same module across executions it uses its
name, and for stack frames it uses the function’s entry ad-
dress. To identify heap buffers of the same type the intuition
is that buffers allocated at the same callsite (i.e., instruction
that invokes an allocation) typically are of the same type.
However, there are some exceptions. For example, the pro-
gram could use a wrapper my-malloc and the callsite that
invokes malloc inside the wrapper would return objects of
different types. Multiple such wrappers could be nested. In
this work we use the callsite as a first approximation of the
type of a heap buffer, but only if the callsite proves to be sta-
ble, i.e., all the buffers it allocates have the same size and
are compatible. If a site is not stable, we check if the upper
callsite in the callstack is stable.

For stable callsites ARTISTE builds a callsite tree by merg-
ing all buffer trees allocated at the callsite. Since the same
data structure can be allocated at different callsites, ARTISTE
further merges the callsite trees of callsites that it considers
equivalent into type trees.

Merging trees. Merging compatible trees produces a more
refined tree because the information in each input tree may
be partial. Merging two trees means inserting all fields of
one tree into the other. When inserting a field, if its range
does not partially overlap other fields (only disjoint and com-
pletely enclosed ranges are allowed), the field is added. If
there is already a field in the tree with the same range, the
type of the existing field is updated to be the most refined
of both types. The merging succeeds if the following con-
ditions hold: (1) node ranges do not partially overlap, (2)
there are no incompatible types in overlapping nodes, (3) all
primitive types are in leaf nodes, and (4) dynamic arrays are
only present in the root node. Otherwise, the merging fails.
We say that two trees are compatible if they can be merged
without errors. Figure 2c shows the callsite tree that results
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from merging buffer trees b1 and b2 (both from callsite c1).
The resulting callsite tree has 3 fields, compared to two for
each buffer tree, and field [8:11] has type ptr32, rather than
num32 in buffer b1. Since the Spider game has only one
callsite, Figure 2c is also the type tree used in the signature.

Identifying the data structures of interest. To identify the
unknown data structures holding the sensitive data, we mon-
itor the application as we feed it instances of the sensitive
data, as those will be inserted into the appropriate data struc-
tures. We use taint tracking [40] to taint the sensitive data
(e.g., the nickname of a contact we add to our instant messag-
ing account) and take a snapshot of the program after the data
has been consumed. We scan the memory snapshot to iden-
tify tainted memory locations and the callsites of the heap
buffers that contain the tainted data. Once ARTISTE has re-
covered the type trees, the taint information is used to select
as signature root the type of the buffer that dominates most
tainted buffers.

Code coverage. Producing a data structure signature re-
quires significantly less coverage than recovering all data
structures used by a program because signatures typically
contain only a small number of data structures. For exam-
ple, the signature needed to identify the user contacts in the
Miranda IM client contains only 3 data structures, a small
subset of the more than 1,500 that Miranda defines across
18 modules. To build that signature ARTISTE only needed 5
executions of Miranda operating on the relevant data struc-
tures. These were easily obtained by adding, editing, and
removing contacts. These operations make the program use
the relevant data structures even if they only cover a small
part of the application. While ARTISTE can also be used
to recover all data structures this requires an external input
generation tool to produce inputs that traverse many different
program paths [8,9,21] and may take a very long exploration
time with large programs.

2.2 Architecture Overview

ARTISTE comprises four phases: execution analysis (§3),
global analysis (§4), dynamic shape analysis (§5), and sig-
nature generation (§6).

Execution analysis. Figure 3 details the architecture of the
execution analysis. First, the program is run inside a previ-
ously available execution monitor [?]. The execution mon-
itor is a full system emulator that can run any PE/ELF pro-
gram binary on an unmodified guest operating system (x86
Windows or Linux) inside another host operating system
(Linux on x86). The execution monitor produces an execu-
tion trace, containing all executed instructions and the con-
tents of each instruction’s operands. It also produces an al-
location log with the buffer address, size, and callsite for
each allocation/deallocation operation (heap and memory-
mapped files) invoked by the program during the run.

The execution trace and the allocation log are inputs to
the analysis. The core of the execution analysis is the type

Figure 3: Execution analysis architecture. Gray boxes were
previously available.

tracker, which infers primitive types stored in registers and
memory throughout the execution. For each buffer deallo-
cated and each buffer alive at the end of the execution the
tree builder produces a buffer tree using the primitive types
inferred by the type tracker in the memory range of the buffer
and array information from a previously available array de-
tection module [6]. All buffer trees are output at the end of
the execution.

There are two additional modules. The heap graph builder
outputs a graph of the program’s heap (i.e., a heap graph) at
a periodic interval during the execution. The profiler tracks
for each buffer, the set of functions that operate on the buffer.
If provided with a format tree, it collects the values assigned
to its fields and produces value invariants for them.

Global analysis. Figure 4a details the architecture of the
global analysis. All buffer trees are loaded in the store,
which groups them by callsite. Then, the dynamic array de-
tector classifies callsites as stable, dynamic arrays, or unsta-
ble. Next, the callsite merger merges all buffer trees for a
stable callsite into a callsite tree. Finally, the callsite clus-
terer merges compatible callsite trees into type trees.

Dynamic shape analysis. For each heap graph produced
during execution analysis, dynamic shape analysis identifies
the shapes it contains. The accumulated shape information
from all heap graphs is used to update the type trees output
by the global analysis (Figure 4b).

Signature generation. The signature generator extracts the
subset of the type trees output by the shape analysis that are
reachable from the root data structure. Then, it uses the value
invariants produced by the profiler to annotate the type trees,
and outputs the final hybrid signature (Figure 4c).

3 Execution Analysis

Execution analysis builds a buffer tree for each buffer deal-
located during a program run and for each buffer alive at the
end of the run. The core of the execution analysis is the type
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Figure 4: Global analysis, dynamic shape analysis, and signature generation architecture.

Figure 5: Our primitive type lattice. Above the horizontal
line are the inferred primitive types and below the mapping
to 32-bit C types.

tracker, which implements one of our two TIPO1 dynamic
data-flow-based primitive type inference algorithms, which
are significantly more accurate and faster than an online ver-
sion of REWARDS [33].

Our primitive type lattice. Figure 5 shows our lattice of
primitive types, which is designed for the x86 architectures
(16, 32, or 64-bit). In the lattice, > represents an unknown
type. Not shown in the figure is ⊥, which represents a type
conflict. All types are connected to⊥. The dotted line marks
the conversion from our primitive types to C types in a 32-bit
architecture. The goal of the type tracker is to infer refined
primitive types, i.e., as far down the lattice as possible with-
out reaching ⊥.

Our primitive pointer types (ptr32, ptr64) are
parametrized by a set of target types the pointer can point to,
i.e., they distinguish between a struct a* and a struct
b*. Pointer target types are fundamental to identify callsites
of the same type and recursive data structures. We need a set
because pointers may point to objects from multiple callsites,
and also for handling void pointers, and pointers to classes
with inheritance (where the pointer may point to objects of
the parent and child classes).

Compared to the lattice used by TIE [28] our lattice adds
floating-point types (single, double, and extended precision)
and 64-bit data, separates code from data, and considers
pointers to be number subtypes (i.e., ptr32 is a subtype
of num32). The latter change was done so that arithmetic
instructions (e.g., add, sub) always operate on numbers,
regardless if performing integer or pointer arithmetic.

1TIPO stands for Type Inference from Primitive Operations.

Algorithms overview. We propose two online type infer-
ence algorithms which operate forward as the execution pro-
gresses, and compare them with an online version of RE-
WARDS. The main difference between our TIPO-A (aggres-
sive) and TIPO-C (conservative) algorithms is that TIPO-
A types more but may generate some type conflicts, while
TIPO-C types less but does not produce type conflicts in our
experiments.

Both algorithms type locations, i.e., bytes in registers,
memory, and immediate values. For each location (i.e.,
byte), they track the current inferred set of byte types, where
a byte type is a pair of a primitive type in our lattice and an
offset from zero to the size of the primitive type minus one.
At any point in the execution (e.g., buffer deallocations) the
algorithm can output the inferred primitive types from our
lattice by examining sequences of consecutive locations.

The main difference between our algorithms and prior
work [22, 33] is that our algorithms do not use unification.
With unification, when a data movement instruction executes
(dst← src) the type of src propagates to dst and the type of
dst (before the instruction executes) propagates to src. Uni-
fication is problematic when dst is used as temporary storage
and can thus hold variables of different types over time. Un-
typed storage is uncommon at source-level but happens often
at binary-level with registers and the stack. While REWARDS
disables unification when dst is a register the stack may also
be used as temporary storage (e.g., to save registers).

Type sinks. Our algorithms infer types from instruction and
function type sinks using dynamic data flow approaches. In-
struction type sinks define types for the operands of selected
x86 instructions. For example, both operands of an add in-
struction can be typed as num32. Function type sinks de-
fine types for the arguments and return values of functions
with a publicly available prototype (e.g., from the Windows
API). The source-level types in the prototype are mapped to
one of our primitive types. For example, the strlen func-
tion returns a size t value in the EAX register, so on func-
tion return EAX can be typed as uint32. Both type sink
classes return a list of (location, byte type) pairs and separate
read type sinks (locations in operands read by an instruction
or function parameters) from write type sinks (locations in
operands written or return values).

A special instruction type sink is applied to any instruction
that uses indirect memory addressing. This sink determines
which memory addressing register contains a pointer, and
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Algorithm 1 TIPO-A

1 def i n s t r u m e n t i n s n ( insn ) {
2 f o r ( lsrc ,T ) in r e a d t y p e s i n k s ( insn )
3 i d x = g e t i d x ( lsrc )
4 a d d b y t e t y p e ( idx ,T )
5 f o r ( ldst ,T ) in w r i t e t y p e s i n k s ( insn )
6 i d x = new idx ( )
7 s e t i d x ( ldst , i d x )
8 a d d b y t e t y p e ( idx ,T )
9

10 i f ( moves da t a ( insn ) )
11 f o r ( lsrc , ldst ) in r e a d w r i t e l o c a t i o n s ( insn )
12 i d x = g e t i d x ( lsrc )
13 s e t i d x ( ldst , i d x )
14 e l s e
15 f o r ldst in w r i t e l o c a t i o n s ( insn ) and
16 ( ldst , ) not in w r i t e t y p e s i n k s ( insn )
17 c l e a r ( ldst )
18
19 i f i s a l l o c c a l l ( insn ) or i s a l l o c r e t ( insn )
20 (addr ,size ) = g e t a l l o c r a n g e ( insn )
21 f o r a in [addr ,addr+size )
22 c l e a r ( memloc (a ) )
23
24 i f i s d e a l l o c c a l l ( insn )
25 (addr ,size ) = g e t d e a l l o c r a n g e ( insn )
26 c r e a t e b u f f e r t r e e (addr ,size )
27 f o r a in [addr ,addr+size )
28 c l e a r ( memloc (a ) )
29 }

queries for the callsite of the buffer the pointer points to. If
the query returns a callsite (i.e., points-to a heap buffer), the
callsite is added to the set of target types of the pointer, oth-
erwise it is a pointer to >. To efficiently handle the queries
we use a red-black tree that stores the live buffer ranges and
is updated at each allocation and deallocation.

Next, we describe TIPO-A in greater detail, and highlight
the TIPO-C differences.

TIPO-A. Algorithm 1 describes our TIPO-A algorithm,
which calls instrument insn for each executed instruction.
This function updates two maps: an index map from a lo-
cation to an integer index, and a byte type map from an index
to a set of byte types.

The byte type map is updated using the information from
the type sinks (lines 2-8). For each location to type that is be-
ing read, the algorithm uses the get idx function to obtain
the current index of a location from the index map or cre-
ate a fresh index for the location if it currently has no index.
Then, it adds the byte type to the current set of byte types for
the index. For locations to type that are being overwritten,
a fresh index is created for the location and the byte type is
added to the (empty) set for the new index.

The index map is updated in data movement instructions
(e.g., mov, push, pop) by propagating the index from the lo-
cations in the source operand to the corresponding locations
in the destination operand (lines 10-13). Note that get idx
creates a fresh index for the location if it has none. If the in-
struction does not move data but performs other operations
the algorithm clears the index for the locations that are writ-
ten by the instruction and have not been typed by a type sink
associated with this instruction (lines 14-17).

If the instruction is the call or return of a memory alloca-

Figure 6: Example of a problem introduced by unification.

tion the algorithm clears the indices for all locations in the
allocated memory range, as it may later be reused for a dif-
ferent heap object, module, or stack frame (lines 19-22).

When a heap deallocation is invoked, a buffer tree is
created for the deallocated memory range and the memory
range is cleared (lines 23-27). To create a buffer tree, the
byte type set for each location in the range is first resolved
to a single byte type by using the lattice meet operation and
checking that indices are equal. For example, a location with
a byte type set containing (num32,0) and (int32,0) resolves
to (int32,0) but a set containing (num32,0) and (num32,1)
resolves to (⊥,0). Then, sequences of consecutive locations
that form complete primitive types are extracted from the
range. For example, if the location at offset o in the buffer
has a resolved byte type of (int16,0) and the location at o+1
has (int16,1) then an int16 primitive type has been found at
offset o. An empty buffer tree is created with the range of
the deallocated buffer and for each primitive type found in
the range, one field is added to the tree. Next, the tree is
updated with information from the external array detection
module. Finally, the buffer tree is added to the store tagged
with the buffer’s callsite.

TIPO-C. Our conservative algorithm differs from TIPO-A
in that it only updates a single type map from location to
byte type set. In TIPO-C lines 3-4 are replaced by a call to
add byte type which adds the byte type from the sink
to the current byte type set of the location; lines 6-8 are re-
placed by a call to set byte type which sets the byte
type set of the location to a singleton set; and at lines 12-13
rather than propagating an index from source to destination,
the byte type set of the source is propagated. The rest of the
algorithm is identical. A simple way of explaining the dif-
ference between algorithms is that TIPO-C only propagates
types forward (starting at type sinks) but TIPO-A propagates
also backwards because when a type sink types a location
all other (previously seen) locations with the same index are
also typed. This explains why TIPO-C is more conservative
and thus types less.

We use Figure 6 to illustrate the differences between our
algorithms and the online REWARDS. At line 1 the address
of the record structure is moved into register eax. At line
2 eax is cleared. At lines 3–4 both fields in the structure
are cleared using eax. At this point, with REWARDS fields
a and b are unified with the value of eax. With TIPO-A
eax and both fields have the same index. In all 3 algorithms
eax,a,b are untyped. At line 5 a is added to the value
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in the ecx register so a and ecx are assigned the num32
type by the add instruction type sink. At this point, with
REWARDS and TIPO-A, eax, ecx, a, and b are typed as
num32, which is incorrect for b. With TIPO-C, only a and
ecx are typed as num32 as types only propagate forward.
At line 6, the content of b is moved into a floating point reg-
ister so b is assigned the type float32. At this point, with
REWARDS and TIPO-A, eax, a, and b are all conflicted be-
cause num32 and float32 are not compatible in our lat-
tice. With TIPO-C, a and ecx are correctly typed as num32
and b as float32. Finally, at line 7, a is assigned the con-
tent of ecx. REWARDS unifies ecx and a, propagating the
conflict to ecx. Instead, TIPO-A propagates the index from
ecx to a so that at this point both ecx and a are typed as
num32. This removes the conflict in a. TIPO-C simply
propagates the type from ecx to a so all locations stay un-
conflicted.

This example shows that (1) TIPO-C is more conserva-
tive, producing less conflicts; (2) the use of unification by
REWARDS propagates the conflicts generating a snowball
effect; and (3) TIPO-A limits the propagation of conflicts
and can even recover from them. What the example does
not show but our evaluation will is that TIPO-A significantly
types more than TIPO-C (§7).

Performance. Our algorithms are significantly faster than
REWARDS because they do not need to transitively update
the constraint sets but simply update the maps. Our eval-
uation shows that in exchange for typing less, TIPO-C is
a bit faster than TIPO-A. TIPO-A uses two optimizations.
First, any location not in the index map has implicitly type
>, so there is no need to track untyped locations. Second,
the clear function not only removes the index for the loca-
tion from the index map, but also does garbage collection of
unneeded indices in the byte type map.

4 Global Analysis
Global analysis runs once, after all executions have been an-
alyzed. It comprises two steps. First, it merges the buffer
trees from the same callsite, across all executions, into call-
site trees, identifying dynamic arrays and unstable callsites
in the process (§4.1). Then, it identifies compatible callsite
trees and merges them into type trees (§4.2).

4.1 Callsite Trees
The first step in global analysis is classifying each callsite,
from which a buffer was allocated in any execution, as sta-
ble, dynamic array, or unstable, and to produce callsite trees
for stable callsites and dynamic arrays. For this, ARTISTE
partitions callsites into those that always allocate buffers of
the same size and those that do not. For callsites that allocate
buffers of the same size all the buffer trees for the callsite are
merged together. If the merging succeeds (i.e., the buffer
trees are compatible), the callsite is stable and the merged

tree is the callsite tree. Otherwise, the callsite is unstable
and no callsite tree is output.

For each callsite that returns multiple buffer sizes, the
dynamic array detector checks if the callsite allocates a
variable-length array of objects of the same type, which are
used by strings and in container implementations such as
vectors or hash tables. For this, it first computes the greatest
common denominator (gcd) of the sizes of all buffers allo-
cated at that callsite. Then, it splits each buffer tree for the
callsite into subtrees of gcd size and merges all subtrees to-
gether. If the merging produces no errors, it outputs a callsite
tree of type dynamic array of objects with the structure of
the merged subtree. Otherwise, the callsite is unstable and
no callsite tree is output.

The above process could incorrectly consider a dynamic
array or an unstable callsite to be stable, e.g., traces con-
tain only one allocation of a callsite that allocates a variable-
length string. These errors tend to disappear as coverage in-
creases and may also be corrected when merging callsites by
pointer target type (§4.2).

4.2 Type Trees

Multiple callsites may allocate objects of the same type.
ARTISTE uses two steps to merge callsite trees of the same
type into type trees. First, ARTISTE uses the pointer target
type information to identify callsites that are pointed-to by
the same pointer. Then, it clusters the resulting trees based
on their format and profiling information.

Merge by pointer target types. Most pointers always point-
to objects of the same type, but there are exceptions such as
void pointers, pointers to classes with inheritance, and point-
ers to unions. ARTISTE merges callsites that are pointed
to by the same pointer if and only if their callsite trees are
compatible. First, it splits the callsite trees into equivalence
classes using the pointer target type information. For this,
ARTISTE folds over all the callsite trees transitively group-
ing pointers with a non-empty target type intersection. For
example, if pointer p1 in callsiteA has a target set of callsites
{C,D,E} and pointer p2 in callsite B has a target set of
callsites {E,F}, then callsites {C,D,E, F} form an equiv-
alence class because they are likely to allocate objects of the
same type.

For each equivalence class, ARTISTE merges its callsite
trees. If the merging succeeds, the merged tree replaces the
callsite trees, otherwise, they are left separate. Finally, it
iterates over all the resulting trees, updating the pointers to
point to the merged trees, i.e., pointers x and y now point to
the tree resulting from merging callsites {C,D,E, F}.
Clustering. To cluster these groups of callsites into the fi-
nal types, we define a distance metric between two callsite
groups. The distance metric is based on the intuition that
callsites of the same type have the same structure and that
they are used by the program in similar fashion. Our dis-
tance metric first checks if the trees are compatible. If so, it
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Figure 7: Our shapes lattice.

combines the following two features:

• Format feature: This normalized feature captures how
different the formats of two trees are, with zero meaning
identical and one completely dissimilar. The smaller
this feature, the higher confidence the trees belong to
the same type. This feature first computes the tree edit
distance using the algorithm proposed by Zhang and
Shasha [52] and then normalizes the distance using the
metric normalization proposed by Li and Zhang [29].

• Profiling feature: This normalized feature captures how
differently two groups of callsites are used by the pro-
gram. It uses the information obtained by the profiler
during execution analysis. In particular, it compares
the sets of functions that have read or written buffers
of those callsite groups across all executions. First, it
unions the function sets of all callsites in the group.
Then, to compare two function sets A and B, it em-
ploys the Jaccard index, which yields 0 when the sets
are disjoint and 1 when they are identical [24].

The distance between two callsite groups is computed as:

d(g1, g2) =

{ ∑
i wi · di(g1, g2) if compatible(g1,g2)

1 otherwise

where di is the distance for feature i, wi is the weight as-
sociated to the feature, and

∑
i wi = 1. We address weight

selection in §7.2.
Once a distance matrix is computed, ARTISTE applies the

partitioning around medoids (PAM) algorithm to cluster the
callsite groups [27]. Since the PAM algorithm takes as in-
put the number k of clusters to output, the clustering is run
with different k values, selecting the one which maximizes
the Dunn index [16], a measure of clustering quality. Once
clustered, all trees in a cluster are merged into a type tree.
Finally, the pointers are adjusted to point to the new types.

5 Dynamic Shape Analysis
Dynamic shape analysis automatically identifies the shape
of recursive data structures (RDS) present in a heap graph.
It runs on each collected heap graph, accumulating the in-
formation. It comprises two steps. First, the heap graph is

Figure 8: On the left, a heap graph with each node annotated
with its type and each edge with the field holding the pointer.
On the right, the corresponding type graph.

partitioned into disjoint regions (§5.1). Then, regions corre-
sponding to RDS are classified as one of the shapes in the
lattice in Figure 7 (§5.2).

The inputs to dynamic shape analysis are a heap graph,
the type trees, and a type graph derived from the type trees.
We describe them next.

Heap graph. The heap graph is a directed labeled graph
GH = (VH , EH), where VH is the set of objects (i.e., live
buffers) in the heap and EH is the set of pointers. Each
object has three attributes: start address, size, and callsite.
Each pointer is a tuple (src, dst, o), where src, dst ∈ VH
are the source and destination nodes, and o is the offset of the
pointer in the source object. Pointers pointing to the middle
of an object and null pointers are not included in EH .

Type graph. The type graph is derived from the type trees.
It is a directed labeled graph GT = (VT , ET ), where VT
is the set of types in the program’s type trees, and an edge
(n,m, f) represents that type n contains a pointer to type m
at field f in the type tree.

Type trees. The type trees are also used to define two func-
tions: Type(o) returns the type of object o by mapping the
callsite of the object to the corresponding type, and Fields(τ)
returns the set of all pointers defined in type τ .

Dynamic shape analysis outputs for each shape: the shape
type, the concrete objects in the shape, the pointers pointing
into the shape (i.e., shape roots), and the role of the recursive
pointers in the shape (e.g., forward, back, or parent). The
accumulated information is used to annotate the pointers in
the type trees with shape information.

5.1 Identifying Regions
We define a region R ⊆ VH to be a subset of the objects in
the heap graph that play the same role in the program. At a
high level, two objects belong to the same region (i.e., play
the same role) if they: (1) belong to the same recursive data
structure (e.g., the internal list nodes), or (2) have the same
type and are pointed to by equivalent fields of objects in the
same region (e.g., the content objects hanging from the list
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Figure 9: On the left, the heap graph from Figure 8a parti-
tioned by applying the recursive structure relation. On the
right, the final partition after applying also the equivalent
successors relation.

nodes).
For example, Figure 8a shows a concrete heap graph,

which contains a singly-linked list of trees. Nodes in the
same recursive data structure have the same role. This in-
cludes the three upper nodes in the list and the nodes in each
of the three trees. In addition, the 3 trees play the same role
in that they represent the payload of the list. This section ex-
plains how our partition of the heap graph into regions sepa-
rates these objects based on their different roles.

Our general approach to identify regions is to iteratively
group objects together according to some notion of equiva-
lence, a standard technique in heap abstraction [11, 14, 48].
Our particular approach formulates the identification of re-
gions as a congruence closure computation [39]. To con-
struct the closure we first build a map from objects to par-
titions using a Tarjan union-find structure. Formally, Π :
VH → {π1, . . . , πk} where πi ⊆ VH and {π1, . . . , πk} par-
tition VH . We start with one partition per object, then apply
two equivalence relations (detailed below) on the partitions,
until the partitions are closed under the relations. At this
point the resulting partitions (i.e., equivalence classes) cor-
respond to the regions.

The first equivalence relation identifies objects that are
part of the same recursive data structure. Intuitively, two ob-
jects belong to the same recursive data structure if they have
types which belong to a cycle in the type graph and there is
a path between them in the heap graph. In particular, we say
that two types are mutually recursive (i.e., τ1 ∼ τ2) if they
belong to the same strongly connected component in the type
graph. The following relation iteratively identifies all mutu-
ally recursive types until a fixpoint is reached. We use σ(o.f)
to denote the target object that the pointer stored in field f of
object o points-to, and RegType(R) = {Type(o) | o ∈ R}
to denote the set of the types of all objects contained in the
region.

Relation 1 (Recursive Structure) Given partitions π1 and
π2, the recursive structure congruence relation is π1 ≡Π

r

π2 ⇔ ∃τ1 ∈ RegType(π1),∃τ2 ∈ RegType(π2) s.t. τ1 ∼
τ2 ∧ ∃o ∈ π1,∃f ∈ Fields(Type(o)) s.t. σ(o.f) ∈ π2.

In the example in Figure 8 the above relation first identi-
fies in the type graph (Figure 8b) two types that are mutu-
ally recursive with themselves: τl ∼ τl and τt ∼ τt. Then,
it groups connected nodes in the heap graph from those two

types into the same region. Figure 9a shows the results of ap-
plying this relation, where the 3 list nodes have been grouped
into a single partition π1 and the nodes in each of the 3 trees
have been group into partitions π2, π3, π4.

The second equivalence relation identifies whether two
successor partitions π2, π3 of a given partition π1 have equiv-
alent roles and thus π2, π3 should be merged together. For
two successor partitions to have equivalent roles they should
be successors on the same pointer field and they should be
compatible. Formally, we say that partition π2 is a succes-
sor of π1 on f if there is a pointer field f pointing from
an object in π1 to an object in π2, i.e., iff ∃o ∈ π1,∃f ∈
Fields(Type(o)) s.t. σ(o.f) ∈ π2. We say that two (succes-
sor) partitions are compatible if they share some type, i.e.,
Compatible(π2, π3)⇔ RegType(π2) ∩ RegType(π3) 6= ∅.

Relation 2 (Equivalent Successors) For the partition π1

with successors π2 on label f1 and π3 on f2, π2 and π3

are equivalent successors π2 ≡Π
s π3 ⇔ (f1 = f2) ∧

Compatible(π2, π3).

In the example in Figure 9 the above relation merges to-
gether partitions π2, π3, π4 since they are all successors of π1

on the same pointer field fd and they all contain type τt. Fig-
ure 9b shows the final partition of the heap graph into regions
after applying Relation 2 on the results of Relation 1 shown
in Figure 9a. Note that going from Figure 9a to Figure 9b
may require multiple intermediate steps until a fixpoint is
reached by Relation 2.

Using the above two relations the congruence closure can
be efficiently computed in O(EH + VH) space and O(EH ∗
logVH) time. The partitions correspond to the regions.

5.2 Shapes

Once the heap graph has been partitioned into regions, the
analysis identifies which regions correspond to shapes and
their type. For each region, the analysis computes a region
graph, which is the subgraph of the heap graph that con-
tains all nodes in the region and the edges between them,
i.e., Rπ = (π, {(src, dst, o) ∈ EH |src, dst ∈ π}). Region
graphs that contain at least two connected nodes correspond
to shapes. In Figure 9b both regions found contain connected
nodes and thus correspond to shapes.

To identify the shape type, the analysis looks at the struc-
ture of the region graph. First, the analysis identifies the
root objects in each region, which are objects in the region
with incoming pointers from objects in other regions. Then,
the analysis performs a depth-first-search (DFS) traversal of
each region graph starting from the roots. The DFS traversal
classifies each edge (src, dst, o) in the region graph as: for-
ward, if dst has not yet been visited; cross, if dst has already
been visited and the traversal of all children of dst has com-
pleted; and, back, if dst has been visited but the traversal of
its children has not completed.
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Using the edge classification, the analysis performs a
preliminary, coarse-grained, classification of the shape re-
gions using graph-theoretic definitions. Each shape region is
marked as: a Cycle if any edges in Rπ are back edges, a Dag
if any edges in Rπ are cross edges (and there are no back
edges), or a Tree if all edges in Rπ are forward edges.

To refine this preliminary classification the analysis
checks if any of the following predicates holds for the
shape’s region graph Rπ:

• Singly linked list: contains forward pointers at the off-
set of and all edges in Rπ have this offset.

• Doubly linked list: contains forward pointers at offset
of and back pointers at offset ob, and ∀(src, dst, of ),
∃(dst, src, ob). We report of and ob as the forward and
back references in the list, respectively.

• Circular singly linked list: contains both forward and
back pointers at offset o.

• Circular doubly linked list: contains both forward
and back pointers at offsets o1, o2, and ∀(src, dst, o1),
∃(dst, src, o2). We select the smallest offset as the for-
ward reference and the other as the back reference.

• Tree with parent pointer: contains back pointers at
offset op, all other pointers are only seen on forward
edges, and for all edges (src, dst, op) there exists a for-
ward edge (dst, src, o). We select the pointer at op as
the parent reference in the tree and all other as the child
references.

• Self pointer: contains a back edge to itself (src, src, o).

If any of the above predicates holds, the shape type is re-
fined. Otherwise, the previously identified coarse-grained
type (tree, dag, cycle) is reported.

In the example in Figures 8–9, the region graph for π1

(upper dotted box in Figure 8) contains two edges that the
DFS traversal marks as forward. Thus, the coarse-grained
shape type for π1 is Tree. Since both edges are from the
same pointer field fn the region graph for π1 satisfies the
Singly linked list predicate, and the shape type for π1 is
singly linked list on the forward pointer fn. For region π2,
the DFS traversal marks all edges as forward, so the coarse-
grained shape type is also Tree. In this case, there are two
pointer fields (fl and fr in type τt) and no specific predicate
is satisfied. Thus, the shape type for π2 is Tree with children
pointers at fl and fr.

6 Signature Generation & Matching
Given the recovered type trees and the name of the root tree,
the signature generation module first extracts the subset of
type trees reachable by transitively following pointers start-
ing from the root type. Then, it annotates the fields in the
type trees with value invariants produced by the profiler.

Value invariants. Given a signature and a set of execution
traces, the profiler collects the values assigned across the ex-
ecutions for every field in the type trees in the signature. For
each field it tries to produce a value invariant. Compared to
other tools like DAIKON [17], our profiler generates only the
following small number of invariants:

• Zero: (field == 0)
• Constant: (field == c)
• Non-zero: (field != 0)
• Set: (field ∈ {a,b,c})
• Range: (field ∈ [a,b])

The profiler applies the invariant templates in the above
order, e.g., a constant invariant will not also produce a value-
set invariant.

Cycle invariants. Doubly-linked lists, as well as all
shapes that are subtypes of Cycle in Figure 7 contain
implicit cycle invariants. During signature matching,
ARTISTE uses the shape information annotated in the pointer
fields to verify the implicit cycle invariants. For exam-
ple, self→forward→back=self for CDLL and DLL, and
self→child→parent=self for TPP. Acyclic shapes like DAG,
Tree, or List have implicit non-cycle invariants such as
self→forward→forward 6=self, although these typically dis-
criminate less.

Snapshots. Our execution monitor can take snapshots of
the memory state of a process by walking the page table of
the process. For each page mapped to the process, it stores
the virtual address range of the page, its contents, and any
associated taint information.

Signature matching. We have built a scanner that checks
a hybrid signature on each memory address in the snapshot,
reporting addresses that match. Given an address and a type
tree the scanner first reads from the snapshot the range of the
data structure. Then, it checks if the value of each field in
the data structure satisfies any value or cycle invariants de-
fined for the field. For primitive type fields, it also checks
some additional constraints on the field value. Specifically,
if the field is a pointer it checks that the target address exists
in the memory snapshot; if the field is a signed or unsigned
integer (but not a generic number) it checks that its value is
not an address present in the snapshot (i.e., not a pointer);
and for floating point fields we use a heuristic proposed in
DIMSUM [31] that checks if the exponent is within a certain
range since really small and really large values are uncom-
mon in most non-scientific applications.

If all fields satisfy these checks, then for each pointer in
the type tree, the scanner recurses into matching the type tree
corresponding to the pointer’s target type at the (candidate)
pointer’s target address unless: it is a null pointer, the target
address has already been checked against that type, or the
pointer target type is unknown. The scanner limits the re-
cursion depth (by default to 5) to avoid infinite loops when
matching cyclic data structures. The scanning starts at the
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Execution Analysis Global
TIPO-A TIPO-C REWARDS * Analysis

healthbmk 26.1 min 22.6 min 2.5 days 2.9 sec
bhbmk 8.5 min 7.4 min 2.5 hours 1.4 sec
miranda 23.9 min 21.6 min 1.4 days 9.9 sec
pidgin 2.2 hours 1.5 hours > 2.5 days 20.7 sec
spider 7.1 min 6.5 min 56.1 min 0.1 sec

Table 1: Total runtime of the execution and global analysis
over 5 program runs.

lowest address in the snapshot with the root type and lin-
early traverses the process address space, skipping pages not
present in the snapshot.

7 Evaluation
We have implemented ARTISTE using over 8,000 lines of
Ocaml and 3,000 lines of C++ code. Our evaluation of
ARTISTE comprises two parts. First, we evaluate the 3
phases involved in the signature generation process (§7.1–
§7.3) Then, we evaluate the signatures by scanning a num-
ber of memory snapshots (§7.4). We use 5 programs in our
evaluation. Bhbmk and Healthbmk are two C++ programs
that are part of the Olden heap analysis benchmark [18] so
we know their data structures and the shape of their recur-
sive data structures. Pidgin [43] and Miranda [37] are two
large and popular open-source IM clients written in C that
are interesting because they contain sensitive data such as the
user’s contacts. For these 4 programs we have their source
code and for all but Miranda also PDB symbol files. Source
code and PDB files are not used by ARTISTE, but are needed
as ground truth to evaluate the results. We also include the
Windows Spider card game for which we have no source
code or debugging symbols. All programs are run on a Win-
dows XP SP3 guest OS.

Since our goal is to create signatures for the program’s
data structures rather than the internal data structures in Win-
dows API libraries, we configure ARTISTE to ignore alloca-
tions by standard Windows libraries (e.g., kernel32.dll
or gdi32.dll) focusing on the program’s modules (exe-
cutable and associated DLLs). The analysis comprises the
following total modules: 1 for bhbmk and healthbmk, 4 for
spider, 18 for Miranda, and 90 for Pidgin. Despite this, the
data types implementing the containers from the C++ STL
are still inferred because they are provided as C++ templates
and inlined into every module that uses them.

7.1 Execution Analysis

In this section, we evaluate our type inference algorithms,
comparing them with an online version of REWARDS. For a
fair comparison, rather than using the REWARDS implemen-
tation (kindly provided by the authors), we re-implement it
in our framework, so that we can use exactly the same type

Program Float64 Ptr32 Int32 Num32 Other
bhbmk 35,527 5,954 0 2,825 0
healthbmk 3,630 124,282 2,021 11,301 0
miranda 0 6,477 132 3,210 238
pidgin 304 55,733 35 80,394 12,493
spider 0 836 0 756 0

Total 39,461 193,282 2,188 98,486 12,731

Table 3: Primitive types inferred by TIPO-A over the 5 pro-
gram runs.

sinks and the same type lattice for all algorithms. This way,
we focus the comparison in the algorithm and particularly in
the use of unification. We term this version REWARDS*.

Table 1 shows the runtime of the 3 algorithms over 5
traces. REWARDS* on Pidgin did not finish running on any
of the 5 traces in the 60 hours that we had allocated for each
trace, so the runtime is left as at least 2.5 days. The results
show that in the 4 programs that complete, the fastest al-
gorithm is TIPO-C, 12% faster than TIPO-A, and that RE-
WARDS* is two orders of magnitude slower than both. This
is due to REWARDS* needing to transitively update the con-
straint sets for every move-like instruction.

Table 2 shows the execution analysis results over 5 exe-
cutions. The second column shows the total number of heap
bytes (above) and buffers (below) allocated by the program
over the 5 executions. Then, for each algorithm, the table
shows the number and percentage of allocated bytes that
are typed, untyped (>), and conflicted (⊥). The numbers
for REWARDS* on Pidgin are missing because the analysis
did not complete, as explained above. The results show that
TIPO-A types the most locations, followed by TIPO-C, with
REWARDS* typing the least. All 3 algorithms leave simi-
lar numbers of bytes untyped so bytes that are typed with
TIPO-A and TIPO-C are conflicted with REWARDS*. This
happens because with unification once a conflict is found it
propagates causing a snowball effect. While TIPO-A types
more than TIPO-C, it also produces some conflicts for Pidgin
and Miranda, while TIPO-C does not produce any conflicts
in these experiments.

Table 3 presents the total number of primitive types in-
ferred in the 5 runs using TIPO-A. Pointers dominate most
programs except for bhbmk which uses a large number of
double floating point numbers. It also shows that we infer
many more generic numbers than signed or unsigned inte-
gers. While a few of these are pointers that were not deref-
erenced, this number illustrates the difficulty of determining
signedness at the binary level.

Overall, the execution analysis results show that TIPO-A
and TIPO-C significantly outperform REWARDS* in perfor-
mance and accuracy. We believe TIPO-A is preferable for
most applications since it types more with only a small num-
ber of conflicts and similar performance to TIPO-C.
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TIPO-A TIPO-C REWARDS*
Runs Bytes / Buf. Typed > ⊥ Typed > ⊥ Typed > ⊥

bhbmk
5 330,884 319,012 11,872 0 307,424 23,460 0 291,560 10,353 28,971

12,993 96.4% 3.6% 0% 92.9% 7.1% 0% 88.1% 3.1% 8.8%
health- 5 806,424 579,456 226,968 0 567,136 239,288 0 84,536 231,136 490,752
bmk 63,310 71.9% 28.1% 0% 70.3% 29.7% 0% 10.5% 28.7% 60.8%

pidgin
5 1,479,670 558,966 907,182 13,522 284,712 1,194,958 0 - - -

49,213 37.8% 61.3% 0.9% 19.2% 80.8% 0% -% -% -%

miranda
5 5,268,186 39,583 5,225,272 3,331 5,990 5,262,196 0 16,828 5,205,512 45,846

47,118 0.7% 99.2% 0.1% 0.1% 99.9% 0% 0.3% 98.8% 0.9%

spider
5 9,072 6,368 2,704 0 6,312 2,760 0 4,000 2,704 2,368

756 70.2% 29.8% 0% 69.6% 30.4% 0% 44.1% 29.8% 26.1%

Table 2: Primitive type inference results. Out of the total number of bytes allocated during 5 executions, how many were
typed, untyped (>), and conflicted (⊥), using the 3 different typing algorithms. The missing numbers take over 60 hours to
analyze each trace.

TIPO-A TIPO-C
Runs Callsites Types Types Typed > ⊥ Types Types Typed > ⊥

(stb/dynarr/unstb) (ptr) (final) (ptr) (final)
bhbmk 5 23 (22/1/0) 23 19 83.0% 17.0% 0% 23 19 81.5% 18.5% 0%
healthbmk 5 16 (15/1/0) 11 9 81.0% 19.0% 0% 11 9 78.6% 21.4% 0%
miranda 5 126 (98/28/0) 112 82 0.7% 99.3% 0% 115 85 0.3% 99.7% 0%
pidgin 5 170 (129/41/0) 161 123 17.1% 82.8% 0.1% 161 125 11.6% 88.4% 0%
spider 5 1 (1/0/0) 1 1 100% 0% 0% 1 1 100% 0% 0%

Table 4: Global analysis results. It includes the number of unique callsites, as well as the number of type trees obtained by
merging callsite trees by pointer target type.

7.2 Global Analysis

Table 4 presents the global analysis results on the buffer trees
produced in the 5 program runs for each program in §7.1.
The third column shows the number of callsite trees pro-
duced by merging the buffer trees by callsite and the split
into stable, dynamic arrays, and unstable. It shows that the
number of callsite trees is much smaller than the number of
buffer trees and significantly larger for the programs where
more modules are analyzed (Miranda and Pidgin). Surpris-
ingly, there is a single callsite in the spider game. It also
shows that most callsites are stable, i.e., they allocate buffers
of a single size. The remainders are dynamic arrays, which
mostly correspond to strings and containers such as vectors.
The fourth column shows the number of trees produced by
merging callsite trees using the pointer target type informa-
tion. The number of trees reduces for 3 of the 5 programs.
We have verified the correctness of the merging by pointer
target type using the ground truth for those programs with
debugging symbols.

The last step in global analysis is to cluster the remaining
trees using their structure and profiling information. To se-
lect the best weights for clustering we use the ground truth
from healthbmk and run the clustering with different weights
by increasing the format weight from 0 to 1 in 0.01 incre-
ments. We evaluate each clustering using 3 standard external
clustering validity measures: the Rand index, the Jaccard in-
dex, and the FM index [23]. All three metrics are maximized

when the format weight is 0.86 and the profiling weight is
0.14. Columns 5 and 10 show the final number of type trees
output by the global analysis for each algorithm. The clus-
tering reduces the number of trees in all programs, except,
obviously, spider. The other columns capture the number of
bytes in the final type trees that are typed, untyped, and con-
flicted. For some programs, these numbers are smaller than
the ones in Table 2. This means that there is a large number
of buffers which were typed to a large extent. Once merged,
the percentage of bytes typed in the remaining trees reduces.
However, each merging step produces a finer tree as partial
information is accumulated.

Our manual analysis concludes that the clustering is con-
servative: it does not merge trees of different types; however,
it fails to merge some trees of the same type. For example,
Figure 10 shows the inferred type graph for Healthbmk. The
dynamic array corresponds to a vector container from the
Microsoft STL implementation. Nodes with the same shade
of gray should have been merged. The two shades corre-
spond to the head and internal nodes of a doubly-linked list.
The nodes that were not merged (the gray ones with *1 in
their name) belong to lists that were always empty in the 5
runs. Thus, they are used differently, so the clustering does
not merge them. However, the resulting type graph closely
resembles the one obtained from the source code definitions.
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Figure 10: The inferred type graph for healthbmk. Each
node is labeled with the root type times the number of call-
sites it corresponds to.

Program SLL DLL CDLL Tree SP Other
bhbmk 0 0 0 1 0 0
healthbmk 0 0 1 1 4 0
miranda 1 0 2 0 0 0
pidgin 2 5 0 6 1 2
spider 0 0 1 0 0 0

Table 5: Shape Analysis Results.

7.3 Dynamic Shape Analysis

Every 200,000 instructions, the execution analysis produces
a heap graph using the inferred pointers. Once a type graph is
inferred, all heap graphs for a program are fed to the dynamic
shape analysis. Table 5 shows the inferred shapes from over
1,000 heap graphs. All 5 programs use recursive data struc-
tures. The most common shapes are lists and trees. Doubly-
linked-lists (CDLL and DLL) are more common than singly-
linked-lists. The 5 self-pointers (SP) correspond to recursive
pointers in empty lists. In Pidgin, a cycle and a DAG are
also identified. The only data type seen in the spider game
turns out to be the node of a doubly-linked-list. Each card
stack visible in the GUI corresponds to a DLL. We note that
Healthbmk uses the List container from the Microsoft C++
STL, which our analysis identifies as being implemented us-
ing a CDLL.

7.4 Signatures

The signature generator creates the signature by extracting
the set of types reachable from a given root type. To select
the root type for both Pidgin and Miranda, we use the taint
information in the snapshot (from the contacts that we man-
ually introduced) and select as signature root the callsite (or
the type that this callsite was merged into) of the buffer that
dominates most tainted buffers. For bhbmk and healthbmk
since they build large trees in memory we select the tree root

Program Trees Value Inv. Ptr CI
bhbmk 9 6 (1/3/0/2) 32 (22/2/8) 0
healthbmk 8 18 (0/7/5/6) 25 (25/0/0) 1
miranda 3 3 (1/1/0/1) 4 (4/0/0) 0
pidgin 65 41 (10/13/7/11) 276 (223/27/26) 2
spider 2 4 (1/1/0/2) 4 (4/0/0) 1

Table 6: Summary of generated signatures.

type as signature root. For spider, we choose its only type.
For bhmbk, healthbmk, and spider we clone the selected root
type into another type where we add an invariant to avoid
matching an empty tree or list.

Table 6 summarizes the generated signatures including the
number of type trees in the signature (2nd column), the num-
ber of value invariants and their split into “Constant/Non-
Zero/Set/Range” (3rd column), the number of pointers and
their split into pointers with “one target / no target / multi-
ple targets” (4th column), and the number of implicit cycle
invariants (CI).

Table 7 shows the results of matching the signatures on
a snapshot taken at the end of an execution. It shows the
number of pages in the snapshot, the number of instances
of the root data structure in the snapshot (from the ground
truth), and the number of detections, false positive rate, and
false negative rate for 3 types of signatures: hybrid, value-
invariant only, and points-to only. The results show that the
hybrid signatures produce no false negatives, e.g., the Pid-
gin signature successfully identifies the 10 user contacts in
memory and the Miranda signature identifies the data struc-
ture holding all properties of the ICQ protocol, including the
ICQ contacts. They also show no false positives for 4 of
the 5 programs (all but Miranda). For those 4 programs, the
value invariant and points-to only signatures detect the in-
stances but produce a large number of false positives. This
shows that signatures need to comprise as much discrimi-
nating information as possible; it is not enough to use only
value-invariants, points-to relationships, or cycle invariants.

The main reason for the false positives are areas of mem-
ory filled with zero values. Zero is problematic because it
can match pointers, integers, and floats. As such it is impor-
tant to have value-invariants that determine if a pointer has
values different than zero for the points-to relationships and
cycle invariants to work. For the Miranda signature all sig-
natures produce a large number of false positives. We have
built a signature manually from the source code for this data
structure but achieved no better results. This shows that there
are data structures for which signatures are difficult to build
since there is not enough discriminating power.

Overall, this results shows that hybrid signatures work bet-
ter than prior value-invariant and points-to signatures, min-
imizing false positives, and that some data structures signa-
tures are challenging to build even when source code, debug-
ging symbols, and profiling information are available.
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Program Pages Inst. Hybrid Signature Value Invariant Signature Points-to Signature
Det. FP% FN% Det. FP% FN% Det. FP% FN%

bhbmk 226 1 1 0% 0% 20 95% 0% 58,964 99.99% 0%
healthbmk 226 5 5 0% 0% 15 66.7% 0% 58,767 99.99% 0%
miranda 2,040 1 138,077 99.99% 0% 227,315 99.99% 0% 794,944 99.99% 0%
pidgin 3,697 10 10 0% 0% 798,170 99.99% 0% 1,217,394 99.99% 0%
spider 701 10 10 0% 0% 1,940 99.5% 0% 197,678 99.99% 0%

Table 7: Signature matching results.

8 Related Work
This section discusses related work on data structure recov-
ery, data structure signatures, shape analysis, and typing the
heap.

Data structure recovery. One approach to data structure
recovery uses static analysis. Aggregate Structure Identifi-
cation [45] decomposes aggregate data structures in Cobol
programs using the program’s access patterns and the type
information from functions with a known prototype. Since
source code and debugging symbols may not available, other
work applies static analysis on x86 binaries [1,47]. More re-
cently, TIE [28] infers the type of the program’s variables
from its binary using instruction type sinks. We draw in-
spiration from TIE for our primitive type lattice but in our
dynamic approach solving a constraint system at each deal-
location would be too expensive.

LAIKA [12] uses a machine learning approach to identify
data structures in a memory snapshot and cluster those of the
same type. This information is used to compare how similar
two snapshots are. Our work differs on the use of dynamic
analysis, which enables aggregating information from mul-
tiple executions and memory snapshots.

Another approach recovers types and data structures using
dynamic analysis. Guo et al. [22] propose an algorithm for
inferring abstract types by partitioning variables into equiva-
lence classes. Our primitive type inference algorithm is sim-
ilar in that it assigns each used variable a fresh index, but it
does not use unification and recovers primitive types. DIS-
PATCHER [7] follows ASI in leveraging the type information
from functions with a known prototype for type inference,
but uses a dynamic data-flow approach. It reverse-engineers
the structure of the buffer holding a message about to be
sent on the network, which corresponds to the message struc-
ture. REWARDS [33] uses a similar approach but proposes an
algorithm that types the program’s internal data structures,
rather than a single buffer. Our primitive type inference algo-
rithm differs from REWARDS in that it works online, does not
use unification, uses a well-defined lattice, and parametrizes
pointers by their target type. HOWARD [50] recovers data
structures and arrays using pointer stride analysis, but does
not recover type information other than pointers. POINT-
ERSCOPE [53] infers pointer and non-pointer types using a
variant of the traditional W algorithm [13] that constrains
unification. ARTISTE differs from prior dynamic techniques
in that it addresses the full data structure recovery process

from primitive field types up to recursive data structures.

Data structure signatures. Tools like PTFINDER [49],
VOLATILITY [51], and MEMPARSER [4] scan memory im-
ages using manually generated value invariant signatures
to identify instances of data structures of interest. Baliga
et al. [2] propose automatically generating value invari-
ant signatures from the program’s type definitions using an
approach introduced in DAIKON [17]. Gavitt et al. [15]
harden value invariant signatures by removing fields that
do not affect the program’s processing. SIGGRAPH [32]
proposes graph signatures, which capture information about
the points-to relationships between data structures. DIM-
SUM [31] uses probabilistic inference to build graph sig-
natures that work in physical memory snapshots for which
there is no page mapping available. Liang et al. [30] manu-
ally build signatures that capture cycle invariants.

ARTISTE differs from these prior work in that it does not
require access to the type definitions in the source code and
that it automatically generates hybrid signatures, which com-
bine points-to relationships, value invariants, and cycle in-
variants, offering higher discriminating power.

Shape analysis. There has been a wealth of prior work on
static shape analysis [3, 11, 20, 34, 35, 48]. These techniques
require flow and context-sensitive analysis, which makes
them expensive and necessarily conservative. They also re-
quire access to the program’s source code. Our partitioning
of the heap graph into regions is based on the work of Mar-
ron et al. [35] and related to other approaches that summarize
the state of a heap snapshot [36, 38].

Another approach identifies recursive data structures that
appear in a particular program execution. Raman and Au-
gust [46] profile the memory access behavior of programs
that use recursive data structures, but do not classify them
into shapes. Pheng and Verbrugge [42] visualize the evolu-
tion of data structures classifying a recursive data structure
as Tree, DAG, or cycle, which corresponds to our coarse-
grained classification. The most related work on dynamic
shape analysis is by Jump et al. [26]. Their approach to
classify recursive data structures into shapes first manually
builds degree signatures for a number of prevalent recursive
data structures. These signatures are matched against degree
summary graphs built for each program class by piggyback-
ing the Java garbage collector during heap traversal. Our
dynamic shape analysis differs in that we partition the heap
and identify the shape of each region, rather than aggregat-
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ing information per class. Thus, our approach can identify
different lists in a heap graph, not only the fact that a certain
class implements a list.

Typing and traversing the heap. Polishchuk et al. [44] ad-
dress the problem of obtaining a consistent typing for the ob-
jects in the program’s heap. This problem is relevant in the
context of rootkit detection to traverse the kernel’s dynamic
memory [2, 10, 25]. These works rely on the availability of
the program’s type definitions. ARTISTE can enable such
traversal when definitions are not available.

9 Conclusion
We have presented ARTISTE, the first tool for automatically
generating data structure signatures without the program’s
source code or debugging symbols. Unlike prior work that
generates signatures containing only points-to relationships,
value invariants, or cycle invariants, ARTISTE generates hy-
brid signatures that combine all of them, significantly min-
imizing false positives. ARTISTE incorporates a number of
novel techniques for data structure reverse engineering in-
cluding: (1) two new online algorithms that improve the ac-
curacy and speed for primitive type inference, (2) a cluster-
ing approach that uses points-to, structural, and profiling in-
formation for identifying objects of the same type allocated
at different program points, and (3) a novel dynamic shape
analysis that precisely recognizes the recursive data struc-
tures a program uses, classifying them by their shapes. Our
experimental results with a number of binary programs show
that ARTISTE’s hybrid signatures achieve close-to zero false
positives and false negatives when used to find the data struc-
ture instances of interest in memory.
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